Skip to main content
Log in

Assembling the myofibril

Coordinating contractile cable construction with calcium

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Over the last half century, major theoretical and experimental advances have been made in understanding the molecular architecture (e.g., sarcomeric organization) and biophysics (e.g. excitation-contraction coupling) of striated muscle. Studies of how the contractile apparatus is assembled have a shorter history, but our understanding has deepened considerably over the last decade. This review focuses on spontaneous intracellular calcium (Ca2+) signals and their role in skeletal muscle myofibrillogenesis. In embryonic skeletal muscle, several classes of spontaneous Ca2+ signal occur both in vivo and in culture, and blocking their production prevents de novo sarcomere assembly. This review includes a brief overview of myofibrillogenesis, discussion of spontaneous Ca2+ signals produced in embryonic skeletal muscle, the Xenopus model system, the role of Ca2+ signals in regulating assembly of the three major filament systems (actin, titin, and myosin), integration of physiological and biochemical approaches to the problem, and the clinical relevance of basic research in this area. Interspersed throughout are suggestions for future directions and citations for reviews in closely related areas not covered herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischman, D. (1970) The synthesis and assembly of myofibrils in embryonic muscle. Curr. Top. Dev. Biol. 5, 235–280.

    PubMed  CAS  Google Scholar 

  2. Bouche, M., Goldfine, S. M., and Fischman, D. A. (1988) Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system. J. Cell Biol. 107, 587–596.

    PubMed  CAS  Google Scholar 

  3. Goldfine, S. M., Peng, I., Bouche, M., and Fischman, D. A. (1989) Incorporation of newly synthesized protein by myofibrils and myofilaments in a cell-free system, in Cellular and Molecular Biology of Muscle Development, Vol. 93 (Kedes, L. H. and Stockdale, F. E., eds.), Alan R. Liss, New York.

    Google Scholar 

  4. Obinata, T. (1993) Contractile proteins and myofibrillogenesis. Int. Rev. Cytol. 143, 153–189.

    PubMed  CAS  Google Scholar 

  5. Briggs, R. T., Scordilis, S. P., and Powell, J. A. (1995) Myofibrillogenesis in rodent skeletal muscle in vitro: two pathways involving thick filament aggregates. Tissue Cell 27, 91–104.

    PubMed  CAS  Google Scholar 

  6. Epstein, H. and Fischman, D. (1991) Molecular analysis of protein assembly in muscle development. Science 251, 1039–1044.

    PubMed  CAS  Google Scholar 

  7. Pollard, T. D. (2000) Reflections on a quarter century of research on contractile systems. Trends Biochem. Sci. 25, 607–611.

    PubMed  CAS  Google Scholar 

  8. Wang, K. (1985) Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 6, 315–369.

    PubMed  CAS  Google Scholar 

  9. Trinick, J. (1994) Titin and nebulin: protein rulers in muscle? Trends Biochem. Sci. 19, 405–409.

    PubMed  CAS  Google Scholar 

  10. Fowler, V. M. (1996) Regulation of actin filament length in erythrocytes and striated muscle. Curr. Opin. Cell Biol. 8, 86–96.

    PubMed  CAS  Google Scholar 

  11. Wang, K. (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv. Biophys. 33, 123–134.

    PubMed  CAS  Google Scholar 

  12. Littlefield, R. and Fowler, V. M. (1998) Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu. Rev. Cell Dev. Biol. 14, 487–525.

    PubMed  CAS  Google Scholar 

  13. Gautel, M., Mues, A., and Young, P. (1999) Control of sarcomeric assembly: the flow of information on titin. Rev. Physiol. Biochem. Pharmacol. 138, 97–137.

    PubMed  CAS  Google Scholar 

  14. Gregorio, C. C., Granzier, H., Sorimachi, H., and Labeit, S. (1999) Muscle assembly: a titanic achievement? Curr. Opin. Cell Biol. 11, 18–25.

    PubMed  CAS  Google Scholar 

  15. Trinick, J., and Tskhovrebova, L. (1999) Titin: a molecular control freak. Trends Cell Biol. 9, 377–380.

    PubMed  CAS  Google Scholar 

  16. McElhinny, A. S., Labeit, S. and Gregorio, C. C. (2000) Probing the functional roles of titin ligands in cardiac myofibril assembly and maintenance. Adv. Exp. Med. Biol. 481, 67–86.

    PubMed  CAS  Google Scholar 

  17. Furst, D. O., Osborn, M., and Weber, K. (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J. Cell Biol. 109, 517–527.

    PubMed  CAS  Google Scholar 

  18. Obermann, W. M., Gautel, M., Steiner, F., van der Ven, P. F., Weber, K., and Furst, D. O. (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kDa carboxy-termi nal region of titin by immunoelectron microscopy. J. Cell Biol. 134, 1441–1453.

    PubMed  CAS  Google Scholar 

  19. Liu, F., Barral, J. M., Bauer, C. C., et al. (1997) Assemblases and coupling proteins in thick filament assembly. Cell Struct. Funct. 22, 155–162.

    PubMed  CAS  Google Scholar 

  20. Turnacioglu, K. K., Mittal, B., Dabiri, G. A., Sanger, J. M., and Sanger, J. W. (1997) An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol. Biol. Cell 8, 705–717.

    PubMed  CAS  Google Scholar 

  21. Vikstrom, K. L., Seiler, S. H., Sohn, R. L., et al. (1997) The vertebrate myosin heavy chain: genetics and assembly properties. Cell Struct. Funct. 22, 123–129.

    PubMed  CAS  Google Scholar 

  22. Wang, S.M., Lo, M. C., Shang, C., Kao, S. C., and Tseng, Y. Z. (1998) Role of M-line proteins in sarcomeric titin assembly during cardiac myofibrillogenesis. J Cell Biochem. 71, 82–95.

    PubMed  CAS  Google Scholar 

  23. Papa, I., Astier, C., Kwiatek, O., et al. (1999) Alpha actinin-CapZ, an anchoring complex for thin filaments in Z-line. J. Muscle Res. Cell Motil. 20, 187–197.

    PubMed  CAS  Google Scholar 

  24. Ehler, E., Rothen, B. M., Hammerle, S. P., Komiyama, M., and Perriard, J. C. (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J. Cell Sci. 112, 1529–1539.

    PubMed  CAS  Google Scholar 

  25. Van der Ven, P. F., Ehler, E., Perriard, J. C., and Furst, D. O. (1999) Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J. Muscle Res. Cell Motil. 20, 569–579.

    PubMed  Google Scholar 

  26. Wang, K., and Wright, J. (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J. Cell Biol. 107, 2199–2212.

    PubMed  CAS  Google Scholar 

  27. Jin, J. P. and Wang, K. (1991) Nebulin as a giant actin-binding template protein in skeletal muscle sarcomere. Interaction of actin and cloned human nebulin fragments. FEBS Lett. 281, 93–96.

    PubMed  CAS  Google Scholar 

  28. Kruger, M., Wright, J., and Wang, K. (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J. Cell Biol. 115, 97–107.

    PubMed  CAS  Google Scholar 

  29. Casella, J. F., Maack, D. J., and Lin, S. (1986) Purification and initial characterization of a protein from skeletal muscle that caps the barbed ends of actin filaments. J. Biol. Chem. 261, 10,915–10,921.

    CAS  Google Scholar 

  30. Caldwell, J. E., Heiss, S. G., Mermall, V., and Cooper, J. A. (1989) Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 28, 8506–8514.

    PubMed  CAS  Google Scholar 

  31. Fowler, V. M., Sussmann, M. A., Miller, P. G., Flucher, B. E., and Daniels, M. P. (1993) Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J. Cell Biol. 120, 411–420.

    PubMed  CAS  Google Scholar 

  32. Gregorio, C. C. (1997) Models of thin filament assembly in cardiac and skeletal muscle. Cell Struct. Funct. 22, 191–195.

    PubMed  CAS  Google Scholar 

  33. Schafer, D. A., Waddle, J. A., and Cooper, J. A. (1993) Localization of CapZ during myofibrillogenesis in cultured chicken muscle. Cell Motil. Cytoskeleton 25, 317–335.

    PubMed  CAS  Google Scholar 

  34. Schafer, D. A., Hug, C., and Cooper, J. A. (1995) Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J. Cell Biol. 128, 61–70.

    PubMed  CAS  Google Scholar 

  35. Littlefield, R., Almenar-Queralt, A., and Fowler V. M. (2001) Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat. Cell Biol. 3, 544–551.

    PubMed  CAS  Google Scholar 

  36. McElhinny, A. S., Kolmerer, B., Fowler, V. M., Labeit, S., and Gregorio, C. C. (2001) The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J. Biol. Chem. 276, 583–592.

    PubMed  CAS  Google Scholar 

  37. Mudry, R. E., Perry, C. N., Richards, M., Fowler, V. M., and Gregorio, C. C. (2003) The interaction of tropomodulin with tropomyosin stabilizes thin filaments in cardiac myocytes. J. Cell Biol. 162, 1057–1068.

    PubMed  CAS  Google Scholar 

  38. Kostyukova, A. S. and Hitchcock-DeGregori, S. E. (2004) Effect of the structure of the N terminus of tropomyosin on tropomodulin function. J. Biol. Chem. 279, 5066–5071.

    PubMed  CAS  Google Scholar 

  39. Kostyukova, A. S., Rapp, B. A., Choy, A., Greenfield, N. J., and Hitchocock-DeGregori, S. E. (2005) Structural requirements of tropomodulin for tropomyosin binding and actin filament capping. Biochemistry 44, 4905–4910.

    PubMed  CAS  Google Scholar 

  40. Greenfield, N. J., Kostyukova, A. S., and Hitchocock-DeGregori, S. E. (2005) Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. Biophys. J. 88, 372–383.

    PubMed  CAS  Google Scholar 

  41. Lin, Z., Lu, M. H., Schultheiss, T., et al. (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil. Cytoskeleton 29, 1–19.

    PubMed  CAS  Google Scholar 

  42. Sharp, W. W., Terracio, L., Borg, T. K., and Samarel, A. M. (1993) Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. Circ. Res. 73, 172–183.

    PubMed  CAS  Google Scholar 

  43. Simpson, D. G., Sharp, W. W., Borg, T. K., Price, R. L., Samarel, A. M., and Terracio, L. (1995) Mechanical regulation of cardiac myofibrillar structure. Ann. NY Acad. Sci. 752, 131–140.

    PubMed  CAS  Google Scholar 

  44. Simpson, D. G., Sharp, W. W., Borg, T. K., Price, R. L., Terracio, L., and Samarel, A. M. (1996) Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure. Am. J. Physiol. 270, C1075-C1087.

    PubMed  CAS  Google Scholar 

  45. Ferrari, M. B., Rohrbough, J. W., and N. C. Spitzer (1996) Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes. Dev. Biol. 178, 484–497.

    PubMed  CAS  Google Scholar 

  46. Ferrari, M. B. and Spitzer, N. C. (1998) A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J. Cell. Biol. 141, 1349–1356.

    PubMed  CAS  Google Scholar 

  47. Byron, K. L., Puglisi, J. L., Holda, J. R., Eble, D., and Samarel, A. M. (1996) Myosin heavy chain turnover in cultured neonatal rat heart cells: effects of [Ca2+]i and contractile activity. Am. J. Physiol. 271, C1447-C1456.

    CAS  Google Scholar 

  48. Eble, D. M., Qi, M., Waldschmidt, S., Lucchesi, P. A., Byron, K. L., and Samarel, A. M. (1998) Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am. J. Physiol. 274, C1226-C1237.

    PubMed  CAS  Google Scholar 

  49. Berchtold, M. W., Brinkmeier, H., and Muntener, M. (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80, 1215–1265.

    PubMed  CAS  Google Scholar 

  50. Gregorio, C. C. and Antin, P. B. (2000) To the heart of myofibril assembly. Trends Cell Biol. 10, 355–362.

    PubMed  CAS  Google Scholar 

  51. Clark, K. A., McElhinny, A. S., Beckerle, M. C., and Gregorio, C. C. (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell Dev. Biol. 18, 637–706.

    PubMed  CAS  Google Scholar 

  52. Olson, N. J., Pearson, R. B., Needleman, D. S., Hurwitz, M. Y., Kemp, B. E., and Means, A. R. (1990) Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc. Natl. Acad. Sci. USA 87, 2284–2288.

    PubMed  CAS  Google Scholar 

  53. Labeit, S., Gautel, M., Lakey, A., and Trinick, J. (1992) Towards a molecular understanding of titin. EMBO J. 11, 1711–1716.

    PubMed  CAS  Google Scholar 

  54. Mayans, O., van der Ven, P. F., Wilm, M., et al. (1998) Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863–869.

    PubMed  CAS  Google Scholar 

  55. Flucher, B. E. and Andrews, S. B. (1993) Characterization of spontaneous and action potential-induced Ca++ transients in developing myotubes in culture. Cell Motil. Cytoskeleton 25, 143–157.

    PubMed  CAS  Google Scholar 

  56. Lorenzon, P., Giovannelli, A., Ragozzino, D., Eusebi, F., and Ruzzier, F. (1997) Spontaneous and repetitive calcium transients in C2C12 mouse myotubes during in vitro myogenesis. Eur. J. Neurosci. 9, 800–808.

    PubMed  CAS  Google Scholar 

  57. Ferrari, M. B. and Spitzer, M. C. (1999) Calcium signaling in the developing Xenopus myotome. Dev. Biol. 213, 269–282.

    PubMed  CAS  Google Scholar 

  58. Li, H., Cook, J. D., Terry, M., Spitzer, N. C., and Ferrari, M. B. (2004) Calcium transients regulate patterned actin assembly during myofibrillogenesis. Dev. Dyn. 229, 231–242.

    PubMed  CAS  Google Scholar 

  59. Airey, J. A., Baring, M. D., Beck, C. F., et al. (1993a) Failure to make normal alpha ryanodine receptor is an early event associated with the crooked neck dwarf (cn) mutation in chicken. Dev. Dyn. 197, 169–188.

    PubMed  CAS  Google Scholar 

  60. Airey, J. A., Deerinck, T. J., Ellisman, M. H., et al. (1993b) Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal alpha ryanodine receptor and exhibit a partial mutant phenotype. Dev. Dyn. 197, 189–202.

    PubMed  CAS  Google Scholar 

  61. Takeshima, H., Iino, M., Takekura, H., et al. (1994) Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369, 556–559.

    PubMed  CAS  Google Scholar 

  62. Takekura, H., Nishi, M., Noda, T., Takeshima, H., and Franzini-Armstrong, C. (1995) Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Proc. Natl. Acad. Sci. USA 92, 3381–3385.

    PubMed  CAS  Google Scholar 

  63. Barone, V., Bertocchini, F., Bottinelli, R., et al. (1998) Contractile impairment and structural alterations of skeletal muscles from knockout mice lacking type 1 and type 3 ryanodine receptors. FEBS Lett. 422, 160–164.

    PubMed  CAS  Google Scholar 

  64. Shirokova, N., Garcia, J., and Rios, E. (1998) Local calcium release in mammalian skeletal muscle. J. Physiol. 512, 377–384.

    PubMed  CAS  Google Scholar 

  65. Conklin, M. W., Barone, V., Sorrentino, V., and Coronado, R. (1999) Contribution of ryanodine receptor type 3 to Ca(2+) sparks in embryonic mouse skeletal muscle. Biophys. J. 77, 1394–1403.

    PubMed  CAS  Google Scholar 

  66. Conklin, M. W., Ahern, C. A., Vallejo, P., Sorrentino, V., Takeshima, H., and Coronado, R. (2000) Comparison of Ca(2+) sparks produced independently by two ryanodine receptor isoforms (type 1 or type 3). Biophys. J. 78, 1777–1785.

    PubMed  CAS  Google Scholar 

  67. Chun, L. G., Ward, C. W., and Schneider, M. F. (2003) Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. Am. J. Physiol. 285, C686-C697.

    CAS  Google Scholar 

  68. Rios, E. and G. Brum. (2002) Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle. Front. Biosci. 7, 1195–1211.

    Google Scholar 

  69. Schneider, M. F. and C. W. Ward. (2002) Initiation and termination of calcium sparks in skeletal muscle. Front. Biosci. 7, 1212–1222

    Google Scholar 

  70. Wang, R., Bolstad, J., Kong, H., Zhang, L., Brown, C., and Chen, S. R. (2004) The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel(ryanodine receptor) is crucial for channel activation and gating. J. Biol. Chem. 279, 3635–3642

    PubMed  CAS  Google Scholar 

  71. Lacampagne, A., Ward, C. W., Klein, M. G., and Schneider, M. F. (2003) Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution. J. Gen. Physiol. 121, 179.

    Google Scholar 

  72. Hollingworth, S., Peet, J., Chandler, W. K., and Baylor, S. M. (2001) Calcium sparks in intact skeletal muscle fibers of the frog. J. Gen. Physiol. 118, 653–678.

    PubMed  CAS  Google Scholar 

  73. Campbell, N. R., Podugu, S. P., and Ferrari, M. B. (2006) Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev. Biol., in press.

  74. Shirokova, N. and Rios, E. (1997) Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle. J. Physiol. 502, 3–11.

    PubMed  CAS  Google Scholar 

  75. Lacampagne, A., Klein, M. G., and Schneider, M. F. (1998) Modulation of the frequency of spontaneous sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks) by myoplasmic [Mg2+] in frog skeletal muscle. J. Gen. Physiol. 111, 207–224.

    PubMed  CAS  Google Scholar 

  76. Lacampagne, A., Ward, C. W., Klein, M. G., and Schneider, M. F. (1999) Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution. J. Gen. Physiol. 113, 187–198. Erratum in: J. Gen. Physiol. (2003) 121, 179.

    PubMed  CAS  Google Scholar 

  77. Cheng, H., Lederer, M. R., Xiao, R. P., et al. (1996) Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20, 129–140.

    PubMed  CAS  Google Scholar 

  78. Rios E., Stern, M. D., Gonzalez, A., Pizarro, G., and Shirokova, N. (1999) Calcium release flux underlying Ca2+ sparks of frog skeletal muscle. J. Gen. Physiol. 114, 31–48.

    PubMed  CAS  Google Scholar 

  79. Niggli, E. and Egger, M. (2002) Calcium quarks. Front. Biosci. 7, d1288-d1297.

    PubMed  CAS  Google Scholar 

  80. Harris, B. N., Li, H., Terry, M., and Ferrari, M. B. (2005) Calcium transients regulate titin organization during myofibrillogenesis. Cell Motil. Cytoskeleton 60, 129–139.

    PubMed  CAS  Google Scholar 

  81. Pisaniello, A., Serra, C., Rossi, D., et al. (2003) The block of ryanodine receptors selectively inhibits fetal myoblast differentiation. J. Cell Sci. 116, 1589–1597.

    PubMed  CAS  Google Scholar 

  82. Li, J., Puceat, M., Perez-Terzic, C., et al. (2002) Calreticulin reveals a critical Ca(2+) checkpoint in cardiac myofibrillogenesis. J Cell Biol. 158, 103–113.

    PubMed  CAS  Google Scholar 

  83. Dutton, E. K., Simon, A. M., and Burden, S. J. (1993) Electrical activity-dependent regulation of the acetylcholine receptor delta-subunit gene, MyoD, and myogenin in primary myotubes. Proc. Natl. Acad. Sci. USA 90, 2040–2044.

    PubMed  CAS  Google Scholar 

  84. Liu, C., McFarland, D. C., and Velleman, S. G. (2005) Effect of genetic selection on MyoD and myogenin expression in turkeys with different growth rates. Poult. Sci. 84, 376–384.

    PubMed  CAS  Google Scholar 

  85. Kubis, H. P., Hanke, N., Scheibe, R. J., Meissner, J. D., and Gros, G. (2003) Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am. J. Physiol. 285, C56-C63.

    CAS  Google Scholar 

  86. Carrasco, M. A., Riveros, N., Rios, J., et al. (2003) Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells. Am. J. Physiol. 284, C1438-C1447.

    CAS  Google Scholar 

  87. Woods, N. M., Cuthbertson, K. S., and Cobbold, P. H. (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319, 600–602.

    PubMed  CAS  Google Scholar 

  88. Meyer, T. and Stryer, L. (1991) Calcium spiking. Annu. Rev. Biophys. Chem. 20, 153–174.

    CAS  Google Scholar 

  89. Gu, X. and Spitzer, N. C. (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca++ transients. Nature 375, 784–787.

    PubMed  CAS  Google Scholar 

  90. Gomez, T. M. and Spitzer, N. C. (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355.

    PubMed  CAS  Google Scholar 

  91. Bootman, M. D. and Berridge, M. J. (1995) The elemental principles of calcium signaling. Cell 83, 675–678.

    PubMed  CAS  Google Scholar 

  92. Berridge, M. J. (1997) The AM and FM of calcium signaling. Nature 386, 759–760.

    PubMed  CAS  Google Scholar 

  93. Spitzer, N. C. and Sejnowski, T. J. (1997) Biological information processing: bits of progress. Science 277, 1060–1061.

    PubMed  CAS  Google Scholar 

  94. Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003) Calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529.

    PubMed  CAS  Google Scholar 

  95. Fields R. D., Lee P. R., and Cohen J. E. (2005) Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 37, 433–442.

    PubMed  CAS  Google Scholar 

  96. Trybus, K. M. (1994) Role of myosin light chains. J. Muscle Res. Cell Motil. 15, 587–594.

    PubMed  CAS  Google Scholar 

  97. Gallagher, P. J., Herring, B. P., and Stull, J. T. (1997) Myosin light chain kinases. J. Muscle Res. Cell Motil. 18, 1–16.

    PubMed  CAS  Google Scholar 

  98. Chin, E. R., Olson, E. N., Richardson, J. A., et al. (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509.

    PubMed  CAS  Google Scholar 

  99. Wu, H., Naya, F. J., McKinsey, T. A., et al. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973.

    PubMed  CAS  Google Scholar 

  100. McKinsey, T. A., Zhang, C. L., Lu, J., and Olson, E. N. (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111.

    PubMed  CAS  Google Scholar 

  101. Naya, F. S. and Olson, E. (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. Cell Biol. 11, 683–688.

    PubMed  CAS  Google Scholar 

  102. Olson, E. N. and Williams, R. S. (2000) Remodeling muscles with calcineurin. Bioessays 22, 510–519.

    PubMed  CAS  Google Scholar 

  103. Schulz, R. A. and Yutzey, K. E. (2004) Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol. 266, 1–16.

    PubMed  CAS  Google Scholar 

  104. Olivares, E. B., Tanksley, S. J., Airey, J. A., et al. (1991) Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. Biophys. J. 59, 1153–1163.

    PubMed  CAS  Google Scholar 

  105. Oyamada, H., Murayama, T., Takagi, T., et al. (1994) Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. J. Biol. Chem. 269, 17,206–17,214.

    CAS  Google Scholar 

  106. Ottini, L., Marziali, G., Conti, A., Charlesworth, A., and Sorrentino, V. (1996) Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem. J. 315, 207–216.

    PubMed  CAS  Google Scholar 

  107. Ogawa, Y., Murayama, T., and Kurebayashi, N. (2002) Ryanodine receptor isoforms of non-Mammalian skeletal muscle. Front. Biosci. 7, d1184-d1194.

    PubMed  CAS  Google Scholar 

  108. Schiaffino, S., and Margreth, A. (1969) Coordinated development of the sarcoplasmic reticulum and T system during postnatal differentiation of rat skeletal muscle. J. Cell Biol. 41, 855–875.

    PubMed  CAS  Google Scholar 

  109. Ezerman, E. B. and Ishikawa, H. (1967) Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro. J. Cell Biol. 35, 405–420.

    PubMed  Google Scholar 

  110. Huang, C. L. and Hockaday, A. R. (1988) Development of myotomal cells in Xenopus laevis larvae. J. Anat. 159, 129–136.

    PubMed  CAS  Google Scholar 

  111. Flucher, B. E. and Franzini-Armstrong, C. (1996) Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc. Natl. Acad. Sci. USA 93, 8101–8106.

    PubMed  CAS  Google Scholar 

  112. De Smedt, H., Parys, J. B., Himpens, B., Missiaen, L., and Borghgraef, R. (1991) Changes in the mechanism of Ca++ mobilization during the differentiation of BC3H1 muscle cells. Biochem. J. 273, 219–223.

    PubMed  Google Scholar 

  113. Kume, S., Muto, A., Okano, H., and Mikoshiba, K. (1997) Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis. Mech. Dev. 66, 157–168.

    PubMed  CAS  Google Scholar 

  114. Estrada, M., Cardenas, C., Liberona J. L., et al. (2001) Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors. J. Biol. Chem. 276, 22,868–22,874.

    CAS  Google Scholar 

  115. Powell, J. A., Carrasco, M. A., Adams, D. S., et al. (2001) IP(3) receptor function and localization in myotubes: an unexplored Ca(2+) signaling pathway in skeletal muscle. J. Cell Sci. 114, 3673–3683.

    PubMed  CAS  Google Scholar 

  116. Araya, R., Liberona, J. L., Cardenas, J. C., et al. (2003) Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells. J. Gen. Physiol. 121, 3–16.

    PubMed  CAS  Google Scholar 

  117. Spitzer, N. C. (1994) Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. Trends Neurosci. 17, 115–118.

    PubMed  CAS  Google Scholar 

  118. Spitzer, N. C. (1994b) Calcium and gene expression. Prog. Brain Res. 103, 123–126.

    Article  PubMed  CAS  Google Scholar 

  119. Niggli, E. (1999) Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu. Rev. Physiol. 61, 311–335.

    PubMed  CAS  Google Scholar 

  120. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) Signal transduction. The calcium entry pas de deux. Science 287, 1604–1605.

    PubMed  CAS  Google Scholar 

  121. Petersen, O. H. (2002) Calcium signal compartmentalization. Biol. Res. 35, 177–182.

    Article  PubMed  CAS  Google Scholar 

  122. Marcez, N. and Mironneau, J. (2004) Local Ca2+ signals in cellular signaling. Curr. Mol. Med. 4, 263–275.

    Google Scholar 

  123. Ward C. W., Protasi, F., Castillo, D., et al. (2001) Type 1 and type 3 ryanodine receptors generate different Ca(2+) release event activity in both intact and permeabilized myotubes. Biophys. J. 81, 3216–3230.

    PubMed  CAS  Google Scholar 

  124. Percival, A. L., Williams, A. J., Kenyon, J. L., Grinsell, M. M., Airey, J. A., and Sutko J. L. (1994) Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. Biophys. J. 67, 1834–1850.

    PubMed  CAS  Google Scholar 

  125. O'Brien, J. Valdivia, H. H., and Block, B. A. (1995) Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle. Biophys. J. 68, 471–482.

    PubMed  Google Scholar 

  126. Spitzer, N. C. (1976) The ionic basis of the resting potential and a slow depolarizing response in Rohon-Beard neurones of Xenopus tadpoles. J. Physiol. 255, 105–135.

    PubMed  CAS  Google Scholar 

  127. Kidokoro, Y. and Saito, M. (1988) Early cross-striation formation in twitching Xenopus myocytes in culture. Proc. Natl. Acad. Sci. USA 85, 1978–1982.

    PubMed  CAS  Google Scholar 

  128. Linsdell, P. and Moody, W. J. (1995) Electrical activity and calcium influx regulate ion channel development in embryonic Xenopus skeletal muscle. J. Neurosci. 15, 4507–4514.

    PubMed  CAS  Google Scholar 

  129. Henderson, L. P., and Spitzer, N. C. (1986) Autonomous early differentiation of neurons and muscle cells in single cell cultures. Dev. Biol. 113, 381–387.

    PubMed  CAS  Google Scholar 

  130. Shainberg, A., Yagil, G., and Yaffe, D. (1969) Control of myogenesis in vitro by Ca2+ concentration in nutritional medium. Exp. Cell. Res. 58, 163–167.

    PubMed  CAS  Google Scholar 

  131. Bijlenga, P., Liu J. H., Espinos, E. et al. (2000) T-type alpha 1H Ca2_ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc. Natl. Acad. Sci. USA 97, 7627–7632.

    PubMed  CAS  Google Scholar 

  132. Liu, J. H., Konig, S., Michel, M., et al. (2003) Acceleration of human myoblast fusion by depolarization: graded Ca2+ signals involved. Development 130, 3437–3446.

    PubMed  CAS  Google Scholar 

  133. Spruce, A. E. and Moody, W. J. (1992) Developmental sequence of expression of voltage-dependent currents in embryonic Xenopus laevis myocytes. Dev. Biol. 154, 11–22.

    PubMed  CAS  Google Scholar 

  134. Maruyama, K., Kimura, S., Kuroda, M., and and Handa, S. (1977) Connectin, an elastic protein of muscle Its abundance in cardiac myofibrils. J. Biochem. 82, 347–350.

    PubMed  CAS  Google Scholar 

  135. Maruyama, K., Matsubara S., Natori R., Nonomura, Y., and Kimura, S. (1977) Connectin, an elastic protein of muscle. Characterization and function. J. Biochem. 82, 317–337.

    PubMed  CAS  Google Scholar 

  136. Maruyama, K., Murakami, F., and Ohashi, K. (1977) Connectin, an elastic protein of muscle. Comparative biochemistry. J. Biochem. 82, 339–345.

    PubMed  CAS  Google Scholar 

  137. Wang, K., McClure, J. and Tu, A. (1979) Titin: major myofibrillar components of striated muscle. Proc. Natl. Acad. Sci. USA 76, 3698–702.

    PubMed  CAS  Google Scholar 

  138. Furst, D.O., Osborn, M., Nave, R. and Weber, K. (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J. Cell Biol. 106, 1563–1572.

    PubMed  CAS  Google Scholar 

  139. Tskhovrebova, L. and Trinick, J. (2003) Titin: properties and family relationships. Nat. Rev. Mol. Cell. Biol. 4, 679–689.

    PubMed  CAS  Google Scholar 

  140. Maruyama, K., Yoshioka, T., Higuchi, H., Ohashi, K., Kimura, S., and Natori, R. (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J. Cell Biol. 101, 2167–2172.

    PubMed  CAS  Google Scholar 

  141. Van der Ven, P. F., Schaart, G., Croes, H. J., Jap, P. H., Ginsel, L. A., and Ramaekers, F. C. (1993) Titin aggregates associated with intermediate filaments align along stress fiber-like structures during human skeletal muscle cell differentiation. J. Cell Sci. 106, 749–759.

    PubMed  Google Scholar 

  142. Van der Ven P. F. and Furst, D. O. (1997) Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal musscle cells in vitro. Cell Struct. Funct. 22, 163–171.

    Article  PubMed  Google Scholar 

  143. Mues, A., van der Ven, P. F., Young, P., Furst, D. O., and Gautel, M. (1998) Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformationdependent way with telethonin. FEBS Lett. 428, 111–114.

    PubMed  CAS  Google Scholar 

  144. Zou, P., Gautel, M., Geerlof, A., Wilmanns, M., Koch, M. H., and Svergun, D. I. (2003) Solution scattering suggests cross-linking function of telethonin in the complex with titin. J. Biol. Chem. 278, 2636–2644.

    PubMed  CAS  Google Scholar 

  145. Faulkner G., Pallavicini, A., Comelli, A., et al. (2000) FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J. Biol. Chem. 275, 41,234–41,242.

    CAS  Google Scholar 

  146. Whiting, A., Wardale, J., and Trinick, J. (1989) Does titin regulatethe length of muscle thick filaments? J. Mol. Biol. 205, 263–268.

    PubMed  CAS  Google Scholar 

  147. Soteriou, A., Gamage, M., and Trinick, J. (1993) A survey of interactions made by the giant protein titin. J. Cell. Sci. 104, 119–123.

    PubMed  CAS  Google Scholar 

  148. Houmeida, A., Holt, J., Tskhovrebova, L., and Trinick, J. (1995) Studies of the interaction between titin and myosin. J. Cell Biol. 131, 1471–1481.

    PubMed  CAS  Google Scholar 

  149. Labeit, S. and Kolmerer, B. (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296.

    PubMed  CAS  Google Scholar 

  150. Gotthardt, M., Hammer, R. E., Hubner, N., et al. (2003) Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J. Biol. Chem. 278, 6059–6065.

    PubMed  CAS  Google Scholar 

  151. Miller, G., Musa, H., Gautel, M., and Peckham, M. (2003) A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs, myofibrillogenesis. J. Cell Sci. 116, 4811–4819.

    PubMed  CAS  Google Scholar 

  152. Aoki, H., Sadoshima, J., and Izumo, S. (2000) Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat. Med. 6, 183–188.

    PubMed  CAS  Google Scholar 

  153. Du, A., Sanger, J. M., Linask, K. K., and Sanger, J. W. (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev. Biol. 257, 382–394.

    PubMed  CAS  Google Scholar 

  154. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358.

    PubMed  CAS  Google Scholar 

  155. Somlyo, A. P. and Somlyo, A. V. (1994) Signal transduction and regulation in smooth muscle [published erratum in: Nature 372, 812]. Nature 372, 231–236.

    PubMed  CAS  Google Scholar 

  156. Sobieszek, A., Babiychuk, E. B., Ortner, B., and J. Borkowski. (1997) Purification and characterization of a kinase-associated, myofibrillar smooth muscle myosin light chain phosphatase possessing a calmodulin-targeting subunit. J. Biol. Chem. 272, 7027–7033.

    PubMed  CAS  Google Scholar 

  157. Levine, R.J.C., Kensler, R. W., Yang, Z., Stull, J. T. and Sweeney, H. L. (1996) Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. Biophys. J. 71, 898–907.

    PubMed  CAS  Google Scholar 

  158. Rhee D., Sanger, J. M., and Sanger, J. W. (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil. Cytoskeleton 28, 1–24.

    PubMed  CAS  Google Scholar 

  159. Golson, M. L., Sanger, J. M., and Sanger, J. W. (2004) Inhibitors arrest myofibrillogenesis in skeletal muscle cells at early stages of assembly. Cell Motil. Cytoskeleton 59, 1–16.

    PubMed  CAS  Google Scholar 

  160. Wera, S., and Hemming, B. A. (1995) Serine/threonine protein phosphatases. Biochem. J. 311, 17–29.

    PubMed  CAS  Google Scholar 

  161. Wu, Y., Erdodi F., Muranyi, A., Nullmeyer, K. D., Lynch, R. M., and Hartshorne, D. J. (2003) Myosin phosphatase and myosin phosphorylation in differentiating C2C12 cells. J. Muscle Res. Cell Motil. 24, 499–511.

    PubMed  CAS  Google Scholar 

  162. Post, P. L., DeBiasio, R. L., and Taylor, D. L. (1995) A fluorescent protein biosensor of myosin II regulatory light chain phosphorylation reports a gradient of phosphorylated myosin II in migrating cells. Mol. Biol. Cell 6, 1755–1768.

    PubMed  CAS  Google Scholar 

  163. Chew T. L., Wolf, W. A., Gallagher, P. J., Matsumura, F., and Chisholm R. L. (2002) A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J. Cell Biol. 156, 543–553.

    PubMed  CAS  Google Scholar 

  164. Isotani, E., Zhi, G., Lau, K. S., et al. (2004) Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. Proc. Natl. Acad. Sci. USA 101, 6279–6284.

    PubMed  CAS  Google Scholar 

  165. Geguchadze, R., Zhi, G., Lau, K. S. et al. (2004) Quantitative measurements of Ca(2+)/calmodulin binding and activation of myosin light chain kinase in cells. FEBS Lett. 557, 121–124.

    PubMed  CAS  Google Scholar 

  166. Manasek, F. J. (1968) Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J. Morphol. 125, 329–365.

    PubMed  CAS  Google Scholar 

  167. Antin, P. B., Forry-Schaudies, S., Friedman, T. M., Tapscott, S. J., and Holtzer, H. (1981) Taxol induces postmitotic myoblasts to assemble interdigitating, microtubule-myosin arrays that exclude actin filaments. J. Cell Biol. 90 300–308.

    PubMed  CAS  Google Scholar 

  168. LoRusso, S. M., Rhee, D., Sanger, J. M., and Sanger, J. W. (1997) Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil. Cytoskeleton 37, 183–198.

    PubMed  CAS  Google Scholar 

  169. Gregorio, C. C., and Fowler, V. M. (1995) Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J. Cell. Biol. 129, 683–695.

    PubMed  CAS  Google Scholar 

  170. Greenfield, N. J., and Fowler, V. M. (2002) Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin. Biophys. J. 82, 2580–2591.

    Article  PubMed  CAS  Google Scholar 

  171. Beall, C. J., Sepanski, M. A., and Fyrberg, E. A. (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev. 3, 131–140.

    PubMed  CAS  Google Scholar 

  172. Bejsovec, A., and Anderson, P. (1990) Functions of the myosin ATP and actin binding sites are requires for C. elegans thick filament assembly. Cell 60, 133–140.

    PubMed  CAS  Google Scholar 

  173. Bejsovec, A., and Anderson, P. (1988) Myosin heavy-chain mutations that disrupt Caenorhabditis elegans thick filament assembly. Genes Dev. 2, 1307–1317.

    PubMed  CAS  Google Scholar 

  174. Kronert, W.A., O'Donnell, P.T., and Bernstein, S. I. (1994) A charge change in an evolutionarily-conserved region of the myosin globular head prevents myosin and thick filament accumulation in Drosophila. J. Mol. Biol. 236, 697–702.

    PubMed  CAS  Google Scholar 

  175. Cripps, R. M., Suggs, J. A., and Bernstein, S. I. (1999) Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J. 18, 1793–1804.

    PubMed  CAS  Google Scholar 

  176. Swank, D. M., Wells, L., Kronert, W. A., Morrill, G. E., and Bernstein, S. I. (2000) Determing structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of Drosophila. Microsc. Res. Tech. 50, 430–442.

    PubMed  CAS  Google Scholar 

  177. Soeno, Y., Shimada, Y., and Obinata, T. (1999) BDM (2,3-butanedione monoxime), an inhibitor of myosin-actin interaction, suppresses myofibrillogenesis in skeletal muscle cells in culture. Cell Tissue Res. 295, 307–316.

    PubMed  CAS  Google Scholar 

  178. Ramachandran, I., Terry, M., and Ferrari, M. B. (2003) Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis. Cell Motil. Cytoskeleton 55, 61–72.

    PubMed  CAS  Google Scholar 

  179. Van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H., and Furst, D. O. (2000) A functional knock-out of titin results in defective myofibril assembly. J. Cell Sci. 113, 1405–1414.

    PubMed  Google Scholar 

  180. Mardahl-Dumesnil, M., and Fowler, V.M. (2001) Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle. J. Cell Biol. 155, 1043–1053.

    PubMed  CAS  Google Scholar 

  181. Centner, T., Yano, J., Kimura, E., et al. (2001) Identification on muscle specific ring finger proteins as potential regulators of the titin kinase domain. J. Mol. Biol. 306, 717–726.

    PubMed  CAS  Google Scholar 

  182. McElhinny, A. S., Perry C. N., Witt, C. C., Labeit, S., and Gregorio, C. C. (2004) Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J. Cell Sci. 117, 3175–3188.

    PubMed  CAS  Google Scholar 

  183. Lange, S., Xiang, F., Yakovenko, A., et al. (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599–1603.

    PubMed  CAS  Google Scholar 

  184. Wu, H., Naya, F. J., McKinsey, T. A., et al. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973.

    PubMed  CAS  Google Scholar 

  185. Berridge, M. J., Bootman, M. D., and Lipp, P. (1998) Calcium—a life and death signal. Nature 395, 645–648.

    PubMed  CAS  Google Scholar 

  186. Berridge, M., Lipp, P., and Bootman, M. (1999) Calcium signalling, Curr. Biol. 9, R157-R159.

    PubMed  CAS  Google Scholar 

  187. Bootman, M. D., Thomas, D., Tovey, S. C., Berridge, M. J., and Lipp, P. (2000) Nuclear calcium signalling. Cell Mol. Life Sci. 57, 371–378.

    PubMed  CAS  Google Scholar 

  188. Maslanski, J. A., Leshko, L., and Busa, W. B. (1992) Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science 256, 243–245.

    PubMed  CAS  Google Scholar 

  189. Creton, R., Speksnijder, J. E., and Jaffe, L. F. (1998) Patterns of free calcium in zebrafish embryos. J. Cell Sci. 111, 1613–1622.

    PubMed  CAS  Google Scholar 

  190. Gilland, E., Miller, A. J., Karplus, E., Baker, R., and and Webb, S. E. (1999) Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc. Natl. Acad. Sci, USA 96, 157–161.

    PubMed  CAS  Google Scholar 

  191. Cognard, C., Constantin, B., River-Bastide, M., and Raymond, G. (1993) Intracellular calcium transients induced by different kinds of stimulus during myogenesis of rat skeletal muscle cells studied by laser cytofluorimetry with indo-1. Cell Calcium 14, 333–348.

    PubMed  CAS  Google Scholar 

  192. Rivet-Bastide, M., Imbert, N., Cognard, C., Duport, G., Rideau, Y., and Raymond, G. (1993) Changes in cytosolic resting ionized calcium level and in calcium transients during in vitro development of normal and duchenne muscular dystrophy cultured skeletal muscle measured by laser cytofluorimetry using indo-1. Cell Calcium 14, 563–571.

    PubMed  CAS  Google Scholar 

  193. Schwartz, L. M., and Kay, B. K. (1988). Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in Xenopus laevis. Dev. Biol. 128, 441–452.

    PubMed  CAS  Google Scholar 

  194. Root, D. D. and Wang, K. (1994) Calmodulin-sensitive interaction of human nebulin fragments with actin and myosin. Biochemistry 33, 12,581–12,591.

    CAS  Google Scholar 

  195. Ashworth, R. (2004) Approaches to measuring calcium in zebrafish: focus on neuronal development. Cell Calcium 35, 393–402.

    PubMed  CAS  Google Scholar 

  196. Fetcho, J. R., and Bhatt, D. H. (2004) Genes and photons: new avenues into the neuronal basis of behavior. Curr. Opin. Neurobiol. 14, 707–714.

    PubMed  CAS  Google Scholar 

  197. Nicol, R.L., Frey, N., and Olson, E. N. (2000) From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. Annu. Rev. Genomics Hum. Genet. 1, 179–223.

    PubMed  CAS  Google Scholar 

  198. Spitzer, N. C. (2002) Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J. Physiol. 96, 73–80.

    CAS  Google Scholar 

  199. Fournier, H. N., Albiges-Rizo, C., and Block, M. R. (2003) New insights into Nm23 control of cell adhesion and migration. J. Bioenerg. Biomembr. 35, 81–87.

    PubMed  CAS  Google Scholar 

  200. Lombardi, D., and Mileo, A. M. (2003) Protein intractions provide new insight into Nm23/nucleoside diphosphate kinase functions. J. Bioenerg. Biomembr. 35, 67–71.

    PubMed  CAS  Google Scholar 

  201. Ouatas, T., Salerno, M., Palmieri, D., and Steeg, P. S. (2003) Basic and translational advances in cancer metastasis: Nm23. J. Bioenerg. Biomembr. 35, 73–79.

    PubMed  CAS  Google Scholar 

  202. Statham, H. E., Duncan, C. J., and Smith, J. L. (1976) The effect of the ionophore A23187 on the ultrastructure and electrophysiological properties of frog skeletal muscle. Cell Tissue Res. 173, 193–209.

    PubMed  CAS  Google Scholar 

  203. Lorenzon, P., Grohovaz, F., and Ruzzier, F. (2000) Voltage-and ligand-gated ryanodine receptors are functionally separated in developing C2C12 mouse myotubes. J. Physiol. 525, 499–507.

    PubMed  CAS  Google Scholar 

  204. Hori, S., Sugiura, H., Shimizu, T., et al. (1989) Detection of dystrophin on two-dimensional gel electrophoresis. Biochem. Biophys. Res. Commun. 161, 726–731.

    PubMed  CAS  Google Scholar 

  205. Kobayashi, R., Toyoshima, I., Masamune, O., and Tashima, Y. (1990) Detection and isolation of a 30 kDa abnormal protein in avian dystrophic muscle. J. Biochem. 107, 51–55.

    PubMed  CAS  Google Scholar 

  206. Kamper, A., and Rodemann, H. P. (1992) Alterations of protein degradation and 2-D protein pattern in muscle cells of MDX and DMD origin. Biochem. Biophys. Res. Commun. 189, 1484–1490.

    PubMed  CAS  Google Scholar 

  207. Hojlund, K., Staehr, P., Hansen, B. F., et al. (2003) Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes 52, 1393–1402.

    PubMed  CAS  Google Scholar 

  208. Hoffman, E. P., Brown, K. J., and Eccleston, E. (2003) New molecular research technologies in the study of muscle disease. Curr. Opin. Rheumatol. 15, 698–707.

    PubMed  CAS  Google Scholar 

  209. Towbin, J. A., and Bowles, N. E. (2001) Molecular genetics of left ventricular dysfunction. Curr. Mol. Med. 1, 81–90.

    PubMed  CAS  Google Scholar 

  210. Bashyam, M. D., Savithri, G. R., Kumar, M. S., Narasimhan, C., and Nallari P. (2003) Molecular genetics of familial hypertrophic cardiomyopathy (FHC). J. Hum. Genet. 48, 55–64.

    PubMed  Google Scholar 

  211. Gomes, A. V., and Potter, J. D. (2004) Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol. Cell Biochem. 263, 99–114.

    PubMed  CAS  Google Scholar 

  212. Bonnemann, C. G., and Laing, N. G. (2004) Myopathies resulting from mutations in sarcomeric proteins. Curr. Opin. Neurol. 17, 529–537.

    PubMed  CAS  Google Scholar 

  213. Scoote, M., and Williams, A. J. (2002) The cardiac ryanodine receptor (calcium release channel): emerging role in heart failure and arrhythmia pathogenesis. Cardiovasc. Res. 56, 359–372.

    PubMed  CAS  Google Scholar 

  214. Laitinen, P. J., Swan, H., Piippo, K., Viitasalo, M., Toivonen, L., and Kontula, K. (2004) Genes, exercise and sudden death: molecular basis of familial catecholaminergic polymorphic ventricular tachycardia. Ann. Med. 36, 81–86.

    PubMed  CAS  Google Scholar 

  215. Benkusky, N. A., Farrell, E. F., and Valdivia, H. H. (2004) Ryanodine receptor channelopathies. Biochem. Biophys. Res. Commun. 322, 1280–1285.

    PubMed  CAS  Google Scholar 

  216. Frank, J. P., Harati, Y., Butler, I. J., Nelson, T. E., and Scott, C. I. (1980) Central core disease and malignant hyperthermia syndrome. Ann. Neurol. 7, 11–17.

    PubMed  CAS  Google Scholar 

  217. MacLennan, D. H., Duff, C., Zorzato, F., et al. (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343, 559–561.

    PubMed  CAS  Google Scholar 

  218. Fujii, J., Otsu, K., Zorzato, F., et al. (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451.

    PubMed  CAS  Google Scholar 

  219. McCarthy, T. V., Quane, K. A., and Lynch, P. J. (2000) Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum. Mutat. 15, 410–417.

    PubMed  CAS  Google Scholar 

  220. Gommans, I. M., Vlak, M. H., de Haan, A., and van Engelen, B. G. (2002) Calcium regulation and muscle disease. J. Muscle Res. Cell Motil. 23, 59–63.

    PubMed  CAS  Google Scholar 

  221. Mathews, K. D. and Moore, S. A. (2004) Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility, and RYR1 mutations: one disease with many faces? Arch. Neurol. 61, 27–29.

    PubMed  Google Scholar 

  222. Monnier, N. and Lunardi, J. (2000) Biology of malignant hyperthermia: a disease of the calcium channels of the skeletal muscle. Ann. Biol. Clin. 58, 147–156.

    CAS  Google Scholar 

  223. Showalter, C. J., and Engel, A. G. (1997) Acute quadriplegic myopathy: analysis of myosin isoforms and evidence for calpain-mediated proteolysis. Muscle Nerve 20, 316–322.

    PubMed  CAS  Google Scholar 

  224. Poetter, K., Jiang, H., Hassanzadeh, S. et al. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat. Genet. 13, 63–69.

    PubMed  CAS  Google Scholar 

  225. Gailly, P. (2002) New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim. Biophys. Acta 1600, 38–44.

    PubMed  CAS  Google Scholar 

  226. Bassel-Duby, R., and Olson, E. N. (2003) Role of calcineurin in striated muscle: development, adaptation, and disease. Biochem. Biophys. Res. Commun. 311, 1133–1141.

    PubMed  CAS  Google Scholar 

  227. Rizzuto, R., and Pozzan, T. (2003) When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat. Genet. 34, 135–141.

    PubMed  CAS  Google Scholar 

  228. Mathews, K. D., and Moore, S. A. (2004) Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility and RYR1 mutations: one disease with many faces? Arch. Neurol. 61, 27–29.

    PubMed  Google Scholar 

  229. Rizzuto, R., and Pozzan, T. (2003) When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat. Genet. 34, 135–141.

    PubMed  CAS  Google Scholar 

  230. Mathews, K. D., and Moore, S. A. (2004) Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility, and RYR1 mutations: one disease with many faces? Arch. Neurol. 61, 27–29.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, M.B., Podugu, S. & Eskew, J.D. Assembling the myofibril. Cell Biochem Biophys 45, 317–337 (2006). https://doi.org/10.1385/CBB:45:3:317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:3:317

Index Entries

Navigation