Skip to main content
Log in

Dynamics of RhoA and ROKα translocation in single living cells

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The RhoA-binding kinase (ROK) is one of the target kinases of RhoA and is known to play a critical role in regulating cytoskeletal rearrangement in cells. ROK translocates to the plasma membrane fraction; however, the mechanism of the translocation of ROK still remains obscure. To clarify the molecular mechanisms of the translocation of ROK, we co-transfected MDCK cells wity cyan fluorescent protein-tagged RhoA and yellow fluorescent protein-tagged ROKα, or their variants, and monitored the localization and translocation of the two different fluorescent tagged-molecules in single living cells during epithelial growth factor (EGF) stimulation. Both RhoA (wild-type) and ROKα (wild-type) translocated to ruffling membrane with EGF stimulation in several minutes. A ROKα mutant, in which Rho-binding ability is disrupted, is unable to translocate to the membrane with RhoA. However, RhoA mutant Q63L/C190R, an active form lacking membrane localization activity, abolished the translocation of wild-type ROKα, suggesting that the translocation of RhoA is critical for ROK translocation to the membrane. Another mutant lacking the pleckstrin homology domain failed in translocation as well. On the other hand, it was surprising that the kinase dead mutant succeeded in translocation to the membrane after EGF stimulation. Based on these results, we propose the following ROKα translocation mechanism. ROKα binds to RhoA in cytosol and translocates to the membrane based on the membrane-targeting ability of active RhoA. After ROKα associates with the membrane, the pleckstrin homology domain provides the stability of ROKα on the membrane. The activation of enzymatic activity or adenosine triphosphate binding, however, is not directly related to the translocation mechanism, although we found that the membrane association is critical for the activation of the kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narumiya, S. (1996) The small GTPase Rho: cellular functions and signal transduction. J. Biochem. (Tokyo) 120, 215–228.

    CAS  Google Scholar 

  2. Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509–514.

    Article  PubMed  CAS  Google Scholar 

  3. Riento, K. and Ridley, A. J. (2003) ROCKs: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4, 446–456.

    Article  PubMed  CAS  Google Scholar 

  4. Feng, J., Ito, M., Ichikawa, K., et al. (1999) Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J. Biol. Chem. 274, 37,385–37,390.

    CAS  Google Scholar 

  5. Feng, J., Ito, M., Kureishi, Y., et al. (1999) Rho-associated kinase of chicken gizzard smooth muscle. J. Biol. Chem. 274, 3744–3752.

    Article  PubMed  CAS  Google Scholar 

  6. Amano, M., Chihara, K., Nakamura, N., Kaneko, T., Matsuura, Y., and Kaibuchi, K. (1999) The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem. 274, 32,418–32,424.

    CAS  Google Scholar 

  7. Gong, M. C., Gorenne, I., Read, P., et al. (2001) Regulation by GDI of RhoA/Rho-kinase-induced Ca2+ sensitization of smooth muscle myosin II. Am. J. Physiol. Cell Physiol. 281, C257-C269.

    PubMed  CAS  Google Scholar 

  8. Leung, T., Manser, E., Tan, L., and Lim, L. (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase, which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29,051–29,054.

    CAS  Google Scholar 

  9. Tan, I., Seow, K. T., Lim, L., and Leung, T. (2001) Intermolecular and intramolecular interactions regulate catalytic activity of myotonic dystrophy kinase-related Cdc42-binding kinase alpha. Mol. Cell Biol. 21, 2767–2778.

    Article  PubMed  CAS  Google Scholar 

  10. Ikebe, M., Reardon, S., Schwonek, J. P., Sanders, C. R., and Ikebe, R. (1998) Structural requirement of the regulatory light chain of smooth muscle myosin as a substrate for myosin light chain kinase. J. Biol. Chem. 269, 28,165–28,172.

    Google Scholar 

  11. Ikebe, M., Kambara, T., Stafford, W. F., Sata, M., Katayama, E., and Ikebe, R. (1998) A hinge at the central helix of the regulatory light chain of myosin is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. J. Biol. Chem. 273, 17,702–17,707.

    Article  CAS  Google Scholar 

  12. Niiro, N., Koga, Y., and Ikebe, M. (2003) Agonist-induced changes in the phosphorylation of the myosin-binding subunit of myosin light chain phosphatase and CPI17, two regulatory factors of myosin light chain phosphatase, in smooth muscle. Biochem. J. 369, 117–128.

    Article  PubMed  CAS  Google Scholar 

  13. Yano, K., Araki, Y., Hales, S. J., Tanaka, M., and Ikebe, M. (1993) Boundary of the autoinhibitory region of smooth muscle myosin light chain kinase. Biochemistry 32, 12,054–12,061.

    CAS  Google Scholar 

  14. Hanks, S. K. and Quinn, A. M. (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200, 38–62.

    Article  PubMed  CAS  Google Scholar 

  15. Ishizaki, T., Naito, M., Fujisawa, K., et al. (1997) p160ROCK, a Rho-associated coiled-coil forming protein kinase, downstream of Rho and induces focal adhesions. FEBS Lett. 404, 118–124.

    Article  PubMed  CAS  Google Scholar 

  16. Fujisawa, K., Fujita, A., Ishizaki, T., Saito, Y., and Narumiya, S. (1996) Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. J. Biol. Chem. 271, 23,022–23,028.

    CAS  Google Scholar 

  17. Kranenburg, O., Poland, M., Gebbink, M., Oomen, L., and Moolenaar, W. H. (1997) Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J. Cell Sci. 110, 2417–2427.

    PubMed  CAS  Google Scholar 

  18. Ikebe, M. and Hartshorne, D. J. (1985) Effects of Ca2+ on the conformation and enzymatic activity of smooth muscle myosin. J. Biol. Chem. 260, 13,146–13,153.

    CAS  Google Scholar 

  19. Fleming, I. N., Elliott, C. M., and Exton, J. H. (1996) Differential translocation of rho family GTPases by lysophosphatidic acid, endothelin-1, and platelet-derived growth factor. J. Biol. Chem. 271, 33,067–33,073.

    CAS  Google Scholar 

  20. Takizawa, N., Niiro, N., and Ikebe, M. (2002) Dephosphorylation of the two regulatory components of myosin phosphatase, MBS and CPI17. FEBS Lett. 515, 127–132.

    Article  PubMed  CAS  Google Scholar 

  21. Uehata, M., Ishizaki, T., Satoh, H., et al. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994.

    Article  PubMed  CAS  Google Scholar 

  22. Miyazaki, K., Yano, T., Schmidt, D. J., et al. (2002) Rhodependent agonist-induced spatio-temporal change in myosin phosphorylation in smooth muscle cells. J. Biol. Chem. 277, 725–734.

    Article  PubMed  CAS  Google Scholar 

  23. Somlyo, A. P. and Somlyo, A. V. (1994) Signal transduction and regulation in smooth muscle. Nature 372, 231–236.

    Article  PubMed  CAS  Google Scholar 

  24. Alberts, A. S., Bouquin, N., Johnston, L. H., and Treisman, R. (1998) Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J. Biol. Chem. 273, 8616–8622.

    Article  PubMed  CAS  Google Scholar 

  25. Lemmon, M. A. and Ferguson, K. M. (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–18.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, X. Q., Tan, I., Ng, C. H., Hall, C., Lim, L., and Leung, T. (2002) Characterization of RhoA-binding kinase ROKalpha implication of the pleckstrin homology domain in ROKalpha function using region-specific antibodies. J. Biol. Chem. 277, 12,680–12,688.

    CAS  Google Scholar 

  27. Ishizaki, T., Maekawa, M., Fujisawa, K., et al. (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15, 1885–1893.

    PubMed  CAS  Google Scholar 

  28. Chardin, P. (2003) GTPase regulation: getting aRnd Rock and Rho inhibition. Curr. Biol. 13, R702-R704.

    Article  PubMed  CAS  Google Scholar 

  29. Ward, Y., Yap, S. F., Ravichandran, V., et al. (2002) The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J. Cell Biol. 157, 291–302.

    Article  PubMed  CAS  Google Scholar 

  30. Riento, K., Guasch, R. M., Garg, R., Jin, B., and Ridley, A. J. (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol. Cell Biol. 23, 4219–4229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Ikebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, K., Komatsu, S. & Ikebe, M. Dynamics of RhoA and ROKα translocation in single living cells. Cell Biochem Biophys 45, 243–254 (2006). https://doi.org/10.1385/CBB:45:3:243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:3:243

Index Entries

Navigation