Skip to main content
Log in

Cholesterol, not polyunsaturated fatty acids, is target molecule in oxidation induced by reactive oxygen species in membrane of human erythrocytes

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The oxidation of polyunsaturated fatty acids (PUFAs) by reactive oxygen species (ROS) is linked to aging and to many diseases. We herein employ initiating peroxyl radical (ROO•) derived from the decomposition of 2,2′-azobis(2-amidinopropane dihydrochloride), hydroxyl radical generated by the Fenton reaction and peroxyl radical (ROO•) and alkoxyl radical (LO•) derived from PUFAs by addition of Cu2+ as ROS sources to oxidize glycerides under alkaline conditions in the presence of methanol instead of being treated traditionally by diazomethane (CH2N2) under acidic conditions (pH=2.0), to obtain corresponding methyl esters for the combination of gas chromatography with mass spectrometry determination. It was found that all the PUFAs in the membrane are perfectly preserved after oxidation by ROS, even though sufficient time is available for the interaction between human erythrocytes and ROS. This indicates that ROS do not damage PUFAs during reaction time. However, three products (cholesta-4,6-dien-3-ol, cholesta-4,6-dien-3-one, and cholesta-3,5-dien-7-one) are produced from the oxidation of cholesterol within this time frame. This qualitative finding, suggests that the cholesterol in the membrane of human erythrocytes is more susceptible to ROS-induced oxidation than are PUFAs, and compels us to re-evaluate the physiological roles of cholesterol and PUFAs in the human erythrocyte membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bland, J. S. (1995) Oxidants and antioxidants in clinical medicine: past, present and future potential. J. Nutr. Environ. Med. 5, 255–280.

    CAS  Google Scholar 

  2. Kirkwood, T. B. L. and Austad, S. N. (2000) Why do we age? Nature 408, 233–238.

    Article  PubMed  CAS  Google Scholar 

  3. Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247.

    Article  PubMed  CAS  Google Scholar 

  4. Werner, E. (2004) GTPases and reactive oxygen species: switches for killing and signaling. J. Cell Sci. 117, 143–153.

    Article  PubMed  CAS  Google Scholar 

  5. Esterbauer, H. and Ramos, P. (1995) Chemistry and pathophysiology of oxidation of LDL. Rev. Physiol. Biochem. Pharmacol. 127, 31–64.

    Article  Google Scholar 

  6. Spiteller, D. and Spiteller, G. (2000) Identification of toxic 2,4-decadienal in oxidized low-density lipoprotein by solid-phase microextraction. Angew. Chem. Int. Ed. 39, 583–585.

    Article  CAS  Google Scholar 

  7. Spiteller, D. and Spiteller, G., (2000) Oxidation of linoleic acid in low-density lipoprotein: an important event in atherogenesis. Angew. Chem. Int. Ed. 39, 585–589.

    Article  CAS  Google Scholar 

  8. Jira, W., Spiteller, G., and Richter, A. (1998) Increased levels of lipid oxidation products in rheumatically destructed bones of patients suffering from rheumatoid. Z. Naturforsch. C 53, 1061–1071.

    PubMed  CAS  Google Scholar 

  9. Richards, D. M. C., Dean, R. T., and Jessup, W. (1988) Membrane proteins are critical targets in free radical mediated cytolysis. Biochim. Biophys. Acta 946, 281–288.

    Article  PubMed  CAS  Google Scholar 

  10. Niki, E., Komuro, E., Takahashi, M., Urano, S., Ito, E., and Terao, K. (1988) Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. J. Biol. Chem. 263, 19,809–19,814.

    CAS  Google Scholar 

  11. Ingold, K. U., Bowry, V. W., Stocker, R., and Walling, C. (1993) Autoxidation of lipids and antioxidation by α-tocopherol and ubiquinol in homogenous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc. Natl. Acad. Sci. USA 90, 45–49.

    Article  PubMed  CAS  Google Scholar 

  12. Sato, Y., Kamo, S., Takahashi, T., and Suzuki, Y. (1995) Mechanism of free radical-induced hemolysis of human erythrocytes: hemolysis by water-soluble radical initiator. Biochemistry 34, 8940–8949.

    Article  PubMed  CAS  Google Scholar 

  13. Davies, K. J. A. and Goldberg, A. L. (1987) Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cell. J. Biol. Chem. 262, 8227–8234.

    PubMed  CAS  Google Scholar 

  14. May, J. M., Qu, Z.-C., and Mendiratta, S. (1998) Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch. Biochem. Biophys. 349, 281–289.

    Article  PubMed  CAS  Google Scholar 

  15. Burkitt, M. (2001) A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: role of lipid hydroperoxides, α-tocopherol, thiols, and ceruloplasmin. Arch. Biochem. Biophys. 394, 117–135.

    Article  PubMed  CAS  Google Scholar 

  16. Rice-Evans, C. A. and Diplock, A. T. (1993) Current status of antioxidant therapy. Free Radic. Biol. Med., 15, 77–96.

    Article  PubMed  CAS  Google Scholar 

  17. Neumann, G. A., Krause, D. S., Carman, C. V., et al. (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumor suppression. Nature 424, 561–565.

    Article  PubMed  CAS  Google Scholar 

  18. Horrocks, L. A. and Sharma, M. In Phospholipids (Hawthorne, J. N. and Answell, G. B., eds.). Elsevier, North Holland, Amsterdam, 1982, p. 52.

    Google Scholar 

  19. Thomas, C. E., Ohlweiler, D. F., and Kalyanaraman, B. (1994) Multiple mechanisms for inhibition of low density lipoprotein oxidation by novel cyclic nitrone spin traps. J. Biol. Chem. 269, 28,055–28,061.

    CAS  Google Scholar 

  20. Streitwieser, A. Jr. and Heathcock, C. H. In Introduction to Organic Chemistry, 3rd ed. Macmillan Inc., New York, 1985, p. 518–521.

    Google Scholar 

  21. Hawkins, C. L., Brown, B. E., and Davies, M. J. (2001) Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis. Arch. Biochem. Biophys. 395, 137–145.

    Article  PubMed  CAS  Google Scholar 

  22. Freyaldenhoven, M. A., Lehman, P. A., Franz, T. J., Lloyd, R. V., and Samokyszyn, V. M. (1998) Retinoic acid-dependent stimulation of 2,2′-azobis(2-amidinopropane)-initiated autoxidation of linoleic acid in sodium dodecyl sulfate micelles: a novel prooxidant effect of retinoic acid. Chem. Res. Toxicol. 11, 102–110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Qun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZQ., Shan, HY. Cholesterol, not polyunsaturated fatty acids, is target molecule in oxidation induced by reactive oxygen species in membrane of human erythrocytes. Cell Biochem Biophys 45, 185–193 (2006). https://doi.org/10.1385/CBB:45:2:185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:2:185

Index Entries

Navigation