Skip to main content
Log in

Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and In situ by using fluorescence-based techniques

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

An important goal in cell biology has been to observe dynamic interactions between protein molecules within a living cell as they execute the reactions of a particular biochemical pathway. An important step toward achieving this goal has been the development of noninvasive fluorescence-based detection and imaging techniques for determining whether and when specific biomolecules in a cell become associated with one another. Furthermore, these techniques, which take advantage of phenomena known as bioluminescence- and fluorescence resonance energy transfer (BRET and FRET, respectively) as well as biomolecular fluorescence complementation (BiFC), can provide information about where and when protein-protein interactions occur in the cell. Increasingly BRET, FRET, and BiFC are being used to probe interactions between components involved in G protein-mediated signal transduction. Heptahelical (7TM) receptors, heterotrimeric guanine nucleotide binding proteins (G proteins) and their proximal downstream effectors constitute the core components of these ubiquitous signaling pathways. Signal transduction is initiated by the binding of agonist to heptahelical (7TM) receptors that in turn activate their cognate G proteins. The activated G protein subsequently regulates the activity of specific effectors. 7TM receptors, G proteins, and effectors are all membrane-associated proteins, and for decades two opposing hypotheses have vied for acceptance. The predominant hypothesis has been that these proteins move about independently of one another in membranes and that signal trandduction occurs when they encounter each other as the result of random collisions. The contending hypothesis is that signaling is propagated by organized complexes of these proteins. Until recently, the data supporting these hypotheses came from studying signaling proteins in solution, in isolated membranes, or in fixed cells. Although the former hypothesis has been favored, recent studies using BRET and FRET have generally supported the latter hypothesis as being the most likely scenario operating in living cells. In addition to the core components, there are many other proteins involved in G protein signaling, and BRET and FRET studies have been used to investigate their interactions as well. This review describes various BRET, FRET, and BiFC techniques, how they have been or can be applied to the study of G protein signaling, what caveats are involved in interpreting the results, and what has been learned about G protein signaling from the published studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Förster, T. (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Annal. Physik 2, 54–75.

    Google Scholar 

  2. Wu, P. G., and Brand, L. (1994) Resonance energy-transfer: methods and applications. Anal. Biochem. 218, 1–13.

    PubMed  CAS  Google Scholar 

  3. Tsien, R. Y. (1998) The green fluorescent protien. Annu. Rev. Biochem. 67, 509–544.

    PubMed  CAS  Google Scholar 

  4. Hechter, O., Yoshinaga, K., Halkerston, I. D. K., Cohn, C. and Dodd, P. (1965) Molecular Basis of Some Aspects of Mental Activity (O. Walaas, ed.), Academic Press, New York, 291–346.

    Google Scholar 

  5. Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    PubMed  CAS  Google Scholar 

  6. Tolkovsky, A. M., and Levitzky, A. (1981) Theories and predictions of models describing sequential interactions between the receptor, the GTP regulatory unit, and the catalytic unit of hormone dependent adenylate cyclases. J. Cyclic Nucleotide Res. 7, 139–150.

    PubMed  CAS  Google Scholar 

  7. Rebois, R. V., and Hébert, T. E. (2003) Protein complexes involved in hepatahelical receptor-mediated signal transduction. Recept. Channels 9, 169–194.

    PubMed  CAS  Google Scholar 

  8. Phizicky, E., Bastiaens, P. I. H., Zhu, H., Snyder, M., and Fields, S. (2003) Protein analysis on a proteomic scale. Nature 422, 208–215.

    PubMed  CAS  Google Scholar 

  9. Eyckerman, S., and Tavernier, J. (2002) Methods to map protein interactions in mammalian cells: different tools to address different questions. Eur. Cytokine Netw. 13, 276–284.

    PubMed  CAS  Google Scholar 

  10. Yan, Y. and Marriott, G. (2003) Analysis of protein interactions using fluorescence technologies. Curr. Opin. Chem. Biol., 7, 635–640.

    PubMed  CAS  Google Scholar 

  11. Truong, K., and Ikura, M. (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 11, 573–578.

    PubMed  CAS  Google Scholar 

  12. Stryer, L. (1978) Fluorescence energy-transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    PubMed  CAS  Google Scholar 

  13. Rizzo, M. A., Springer, G. H., Granada, B., and Piston, D. W. (2004) An improved cyan fluorescent protein variant useful for FRET. Nat. Biotech. 22, 445–449.

    CAS  Google Scholar 

  14. Mitra, R. D., Silva, C. M., and Youvan, D. C. (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173, 13–17.

    PubMed  CAS  Google Scholar 

  15. Rocheville, M., Lange, D. C., Kumar, U., Sasi, R., Patel, R. C., and Patel, Y. C. (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J. Biol. Chem. 275, 7862–7869.

    PubMed  CAS  Google Scholar 

  16. Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C., and Patel, Y. C. (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157.

    PubMed  CAS  Google Scholar 

  17. Ramsay, D., Carr, I. C., Pediani, J., et al. (2004) High-affinity interactions between human α1A-adrenoceptor C-terminal splice variants produce homo- and heterodimers but do not generate the α1L-adrenoceptor. Mol. Pharmacol. 66, 228–239.

    PubMed  CAS  Google Scholar 

  18. Canals, M., Burgueno, J., Marcellino, D., et al. (2004) Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Neurochem. 88, 726–734.

    PubMed  CAS  Google Scholar 

  19. Overton, M. C., and Blumer, K. J. (2002) the extracellular N-terminal domain and transmembrane domains 1 and 2 mediate oligomerization of a yeast G protein-coupled receptor. J. Biol. Chem. 277, 41463–41472.

    PubMed  CAS  Google Scholar 

  20. Murakoshi, H., Iino, R., Kobayashi, T., et al. (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. U.S.A., 101, 7317–7322.

    PubMed  CAS  Google Scholar 

  21. Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.

    PubMed  CAS  Google Scholar 

  22. Xu, Y., Piston, D. W., and Johnson, C. H. (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. U.S.A., 96, 151–156.

    PubMed  CAS  Google Scholar 

  23. Lavine, N., Ethier, N., Oak, J. N., et al. (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J. Biol. Chem. 277, 46010–46019.

    PubMed  CAS  Google Scholar 

  24. Mercier, J.-F., Salahpour, A., Angers, S., Breit, A., and Bouvier, M. (2002) Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931.

    PubMed  CAS  Google Scholar 

  25. Lavoie, C., Mercier, J. F., Salahpour, A., et al. (2002) β1/β2-Adrenergic receptor heterodimerization regulates β2-adrenergic receptor internalization and ERK signaling efficacy. J. Biol. Chem. 277, 35402–35410.

    PubMed  CAS  Google Scholar 

  26. Arai, R., Nakagawa, H., Kitayama, A., Ueda, H., and Nagamune, T. (2002) Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J. Biosci. Bioeng. 94, 362–363.

    PubMed  CAS  Google Scholar 

  27. Angers, S., Salahpour, A., Joly, E., et al. (2000) Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. U.S.A., 97, 3684–3689.

    PubMed  CAS  Google Scholar 

  28. Ayoub, M. A., Couturier, C., Lucas-Meunier, E., et al. (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 21522–21528.

    PubMed  CAS  Google Scholar 

  29. Hu, C.-D., Chinenov, Y., and Kerppola, T. K. (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell, 9, 789–798.

    PubMed  CAS  Google Scholar 

  30. Hu, C.-D., and Kerppola, T. K. (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotech. 21, 539–545.

    CAS  Google Scholar 

  31. Wilson, C. G., Magliery, T. J., and Regan, L. (2004) Detecting protein-protein interactions with GFP-fragment reassembly. Nat. Methods 1, 255–262.

    PubMed  CAS  Google Scholar 

  32. Paulmurugan, R., Massoud, T. F., Huang, J., and Gambhir, S. S. (2004) Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res. 64, 2113–2119.

    PubMed  CAS  Google Scholar 

  33. Bhaumik, S., and Gambhir, S. S. (2002), Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. U.S.A., 99, 377–382.

    PubMed  CAS  Google Scholar 

  34. Zhou, J. Y., Toth, P. T., and Miller, R. J. (2003) Direct interactions between the heterotrimeric G protein subunit Gβ5 and the G protein γ subunit-like domain-containing regulator of G protein signaling 11: gain of function of cyan fluorescent protein-tagged Gγ3. J. Pharmacol. Exp. Ther. 305, 460–466.

    PubMed  CAS  Google Scholar 

  35. Cornea, A., Janovick, J. A., Maya-Nunez, G., and Conn, P. M. (2001) Gonadotropin-releasing hormone receptor microaggregation: rate monitored by fluorescence resonance energy transfer. J. Biol. Chem. 276, 2153–2158.

    PubMed  CAS  Google Scholar 

  36. Latif, R., Graves, P., and Davies, T. F. (2002) Ligand-dependent Inhibition of oligomerization at the human thyrotropin receptor. J. Biol. Chem. 277, 45059–45067.

    PubMed  CAS  Google Scholar 

  37. Canals, M., Marcellino, D., Fanelli, F., et al. (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 278, 46741–46749.

    PubMed  CAS  Google Scholar 

  38. Issafras, H., Angers, S., Bulenger, S., et al. (2002) Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J. Biol. Chem. 277, 34666–34673.

    PubMed  CAS  Google Scholar 

  39. Kenworthy, A. K., and Edidin, M. (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84.

    PubMed  CAS  Google Scholar 

  40. Berglund, M. M., Schober, D. A., Statnick, M. A., McDonald, P. H., and Gehlert, D. R. (2003) The use of bioluminescence resonance energy transfer to study neuropeptide Y receptor agonist-induced β-arrestin 2 interaction. J. Pharmacol. Exp. Ther. 306, 147–156.

    PubMed  CAS  Google Scholar 

  41. Hebert, T. E., and Bouvier, M. (1998) Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem. Cell Biol. 76, 1–11.

    PubMed  CAS  Google Scholar 

  42. Angers, S., Salahpour, A., and Bouvier, M. (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435.

    PubMed  CAS  Google Scholar 

  43. Maggio, R., Vogel, Z., and Wess, J. (1993) Co-expression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc. Natl. Acad. Sci. U.S.A., 90, 3103–3107.

    PubMed  CAS  Google Scholar 

  44. Klemens, K., Huggel, K., Heid, J., et al. (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246.

    Google Scholar 

  45. White, J. H., Wise, A., Main, M. J., et al. (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396, 679–682.

    PubMed  CAS  Google Scholar 

  46. Jones, K. A., Borowsky, B., Tamm, J. A., et al. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–679.

    PubMed  CAS  Google Scholar 

  47. Kuner, R., Kohr, G., Grunewald, S., Eisenhardt, G., Bach, A., and Kornau, H. C. (1999) Role of heteromer formation in GABAB receptor function. Science 283, 74–77.

    PubMed  CAS  Google Scholar 

  48. Kaupmann, K., Malitschek, B., Schuler, V., et al. (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687.

    PubMed  CAS  Google Scholar 

  49. Ng, G. Y., Clark, J., Coulombe N., et al. (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem. 274, 7607–7610.

    PubMed  CAS  Google Scholar 

  50. Angers, S., Salahpour, A., and Bouvier, M. (2001) Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sci. 68, 2243–2250.

    PubMed  CAS  Google Scholar 

  51. Rios, C. D., Jordan, B. A., Gomes, I., and Devi, L. A. (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol. Ther. 92, 71–87.

    PubMed  CAS  Google Scholar 

  52. Eidne, K. A., Kroeger, K. M., and Hanyaloglu, A. C. (2002) Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol. Metab. 13, 415–421.

    PubMed  CAS  Google Scholar 

  53. Gazi, L., Lopez-Gimenez, J. F., and Strange, P. G. (2002) Formation of oligomers by G protein-coupled receptors. Curr. Opin. Drug Discov. Devel. 5, 756–763.

    PubMed  CAS  Google Scholar 

  54. Bai, M. (2004) Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal. 16, 175–186.

    PubMed  CAS  Google Scholar 

  55. Breitwieser, G. E. (2004) G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Cir. Res. 94, 17–27.

    CAS  Google Scholar 

  56. Terrillon, S., and Bouvier, M. (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34.

    PubMed  CAS  Google Scholar 

  57. Milligan, G. (2004) Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur. J. Pharm. Sci. 21, 397–405.

    PubMed  CAS  Google Scholar 

  58. Park, P. S., and Wells, J. W. (2004) Oligomeric potential of the M2 muscarinic cholinergic receptor. J. Neurochem. 90, 537–548.

    PubMed  CAS  Google Scholar 

  59. Morfis, M., Christopoulos, A., and Sexton, P. M. (2003) RAMPs: 5 years on, where to now? Trends Pharmacol. Sci. 24, 596–601.

    PubMed  CAS  Google Scholar 

  60. Overton, M. C., and Blumer, K. J. (2000) G-protein-coupled receptors function as oligomers in vivo. Curr. Biol. 10, 341–344.

    PubMed  CAS  Google Scholar 

  61. Floyd, D. H., Geva, A., Bruinsma, S. P., Overton, M. C., Blumer, K. J., and Baranski, T. J. (2003) C5a receptor oligomerization: II. Fluorescence resonance energy transfer studies of a human G protein-coupled receptor expressed in yeast. J. Biol. Chem. 278, 35354–35361.

    PubMed  CAS  Google Scholar 

  62. Kroeger, K. M., Hanyaloglu, A. C., Seeber, R. M., Miles, L. E. C., and Eidne, K. A. (2001) Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276, 12736–12743.

    PubMed  CAS  Google Scholar 

  63. Toth, P. T., Ren, D., and Miller, R. J. (2004) Regulation of CXCR4 receptor dimerization by the chemokine SDF-1α and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J. Pharmacol. Exp. Ther. 310, 8–17.

    PubMed  CAS  Google Scholar 

  64. Babcock, G. J., Farzan, M., and Sodroski, J. (2003) Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J. Biol. Chem. 278, 3378–3385.

    PubMed  CAS  Google Scholar 

  65. Terrillon, S., Durroux, T., Mouillac, B., et al. (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol. 17, 677–691.

    PubMed  CAS  Google Scholar 

  66. Ramsay, D., Kellett, E., McVey, M., Rees, S., and Milligan, G. (2002) Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J. 365, 429–440.

    PubMed  CAS  Google Scholar 

  67. Wurch, T., Matsumoto A., and Pauwels P. J. (2001) Agonist-independent and-dependent oligomerization of dopamine D2 receptors by fusion to fluorescent proteins. FEBS Lett. 507, 109–113.

    PubMed  CAS  Google Scholar 

  68. Gazi, L., Lopez-Gimenez, J. F., Rudiger, M. P., and Strange, P. G. (2003) Constitutive oligomerization of human D2 dopamine receptors expressed in Spodoptera frugiperda 9 (Sf9) and in HEK293 cells: analysis using coimmunoprecipitation and time-resolved fluorescence resonance energy transfer. Eur. J. Biochem. 270, 3928–3938.

    PubMed  CAS  Google Scholar 

  69. Ayoub, M. A., Levoye, A. Delagrange, P., and Jockers, R. (2004) Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol. 66, 312–321.

    PubMed  CAS  Google Scholar 

  70. Zhu, C.-C., Cook, L. B., and Hinkle, P. M. (2002) Dimerization and phosphorylation of thyrotropin-releasing hormone receptors are modulated by agonist stimulation. J. Biol. Chem. 277, 28228–28237.

    PubMed  CAS  Google Scholar 

  71. Hanyaloglu, A. C., Seeber, R. M., Kohout, T. A., Lefkowitz, R. J., and Eidne, K. A. (2002) Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes: differential regulation of β-arrestins 1 and 2. J. Biol. Chem. 277, 50422–50430.

    PubMed  CAS  Google Scholar 

  72. Hebert, T. E., Moffett, S., Morello, et al. (1996) A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392.

    PubMed  CAS  Google Scholar 

  73. Uberti, M. A., Hall, R. A., and Minneman, K. P. (2003) Subtype-specific dimerization of α1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol. Pharmacol. 64, 1379–1390.

    PubMed  CAS  Google Scholar 

  74. Vilardaga, J.-P., Bünemann, M., Krasel, C., Castro, M., and Lohse, M. J. (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat. Biotech. 21, 807–812.

    CAS  Google Scholar 

  75. Hoffmann, C., Gaietta, G., Bünemann, M., et al. (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat. Methods 2, 171–176.

    PubMed  CAS  Google Scholar 

  76. Hernanz-Falcon, P., Rodriguez-Frade, J. M., Serrano, A., et al. (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat. Immunol. 5, 216–223.

    PubMed  CAS  Google Scholar 

  77. Vila-Coro, A. J., Rodriguez-Frade, J. M., Martin De Ana, A., et al. (1999) The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 13, 1699–1710.

    PubMed  CAS  Google Scholar 

  78. Vila-Coro, A. J., Mellado, M., Martin de Ana, A., et al. (2000) HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl. Acad. Sci. U.S.A. 97, 3388–3393.

    PubMed  CAS  Google Scholar 

  79. Nakata, H., Yoshioka, K., and Saitoh, O. (2003) Hetero-oligomerization between adenosine A1 and P2Y1 receptors in living cells: formation of ATP-sensitive adenosine receptors. Drug Dev. Res. 58, 340–349.

    CAS  Google Scholar 

  80. Ciruela, F., Casadó, V., Mallol, J., Canela, E. I., Lluis, C., and Franco, R. (1995) Immunological identification of A1 adenosine receptors in brain cortex. J. Neurosci. Res. 42, 818–828.

    PubMed  CAS  Google Scholar 

  81. Devost, D., and Zingg, H. H. (2003) Identification of dimeric and oligomeric complexes of the human oxytocin receptor by co-immunoprecipitation and bioluminescence resonance energy transfer. J. Mol. Endocrinol. 31, 461–471.

    PubMed  CAS  Google Scholar 

  82. McVey, M., Ramsay, D., Kellett, E., et al. (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer: the human δ-opoid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J. Biol. Chem. 276, 14092–14099.

    PubMed  CAS  Google Scholar 

  83. Cvejic, S., and Devi, L. A. (1997) Dimerization of the δ-opioid receptor: implication for a role in receptor internalization. J. Biol. Chem. 272, 26959–26964.

    PubMed  CAS  Google Scholar 

  84. Carrillo, J. J., Pediani, J., and Milligan, G. (2003) Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J. Biol. Chem. 278, 42578–42587.

    PubMed  CAS  Google Scholar 

  85. Salahpour, A., Angers, S., Mercier, J.-F., Lagace, M., Marullo, S., and Bouvier, M. (2004) Homodimerization of the β2-adrenergic receptor as a prerequisite for cell surface targeting. J. Biol. Chem. 279, 33390–33397.

    PubMed  CAS  Google Scholar 

  86. Ruiz-Velasco, V., and Ikeda, S. R. (2001) Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons. J. Physiol. (Lond) 537, 679–692.

    CAS  Google Scholar 

  87. Heithier, H., Frohlich, M., Dees, C., et al. (1992) Subunit interactions of GTP-bindng proteins. Eur. J. Biochem. 204, 1169–1181.

    PubMed  CAS  Google Scholar 

  88. Hughes, T. E., Zhang, H., Logothetis, D. E. and Berlot, C. H. (2001) Visualization of a functional Gαq-green fluorescent protein fusion in living cells: association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not by activation mediated by receptors or AlF4. J. Biol. Chem. 276, 4227–4235.

    PubMed  CAS  Google Scholar 

  89. Yu, J.-Z., and Rasenick, M. M. (2002) Real-time visualization of a fluorescent Gαs: dissociation of the activated G protein from plasma membrane. Mol. Pharmacol. 61, 352–359.

    PubMed  CAS  Google Scholar 

  90. Hynes, T. R., Mervine, S. M., Yost, E. A., Sabo, J. L., and Berlot, C. H. (2004) Live cell imaging of Gs and the β2-adrenergic receptor demonstrates that both αs and β1γ7 Internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the β2-adrenergic receptor. J. Biol. Chem. 279, 44101–44112.

    PubMed  CAS  Google Scholar 

  91. Bünemann, M., Frank, M., and Lohse, M. J. (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. U.S.A. 100, 16077–16082.

    PubMed  Google Scholar 

  92. Janetopoulos, C., Jin, T., and Devreotes, P. (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408–2411.

    PubMed  CAS  Google Scholar 

  93. Azpiazu, I., and Gautam, N. (2004) A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. J. Biol. Chem. 279, 27709–27718.

    PubMed  CAS  Google Scholar 

  94. Levitzki, A. (1987) Regulation of adenylate cyclase by hormones and G-proteins. FEBS Lett. 211, 113–118.

    PubMed  CAS  Google Scholar 

  95. Levitzki, A., and Bar-Sinai, A. (1991) The regulation of adenylyl cyclase by receptor-operated G proteins. Pharmacol. Ther. 50, 271–283.

    PubMed  CAS  Google Scholar 

  96. Rebois, R. V., Warner, D. R., and Basi, N. S. (1997) Does subunit dissociation necessarily accompany the activation of all heterotrimeric G proteins? Cell Signal. 9, 141–151.

    PubMed  CAS  Google Scholar 

  97. Levitzki, A., and Klein, S. (2002) G-protein subunit dissociation is not an integral part of G-protein action. Chem. Biochem. 3, 815.

    CAS  Google Scholar 

  98. Ganpat, M. M., Nishimura, M., Toyoshige, M., Okuya, S., Pointer, R. H., and Rebois, R. V. (2000) Evidence for stimulation of adenylyl cyclase by an activated Gs heterotrimer in cell membranes: an experimental method for controlling the Gs subunit composition of cell membranes. Cell Signal. 12, 113–122.

    PubMed  CAS  Google Scholar 

  99. Chidiac, P., and Wells, J. W. (1992) Effects of adenyl-nucleotides and carbachol on cooperative interactions among G-proteins. Biochemistry 31, 10908–10921.

    PubMed  CAS  Google Scholar 

  100. Galés, C., Rebois, R. V., Hogue, M., et al. (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184.

    PubMed  Google Scholar 

  101. Hynes, T. R., Tang, L., Mervine, S. M., et al. (2004) Visualization of G protein βγ dimers using bimolecular fluorescence complementation demonstrates roles for both β and γ in subcellular targeting. J. Biol. Chem. 279, 30279–30286.

    PubMed  CAS  Google Scholar 

  102. Hummer, A., Delzeith, O., Gomez, S. R., Moreno, R. L., Mark, M. D., and Herlitze, S. (2003) Competitive and synergistic interactions of G protein β2 and Ca2+ Channel β1b subunits with Cav2.1 channels, revealed by mammalian two-hybrid and fluorescence resonance energy transfer measurements. J. Biol. Chem. 278, 49386–49400.

    PubMed  Google Scholar 

  103. Chidiac, P. (1998) Rethinking receptor-G protein-effector interactions. Biochem. Pharmacol. 55, 549–556.

    PubMed  CAS  Google Scholar 

  104. Gaborik, Z., and Hunyady, L. (2004) Intracellular trafficking of hormone receptors. Trends Endocrinol. Metab. 15, 286–293.

    PubMed  CAS  Google Scholar 

  105. Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J., and Caron, M. G. (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144.

    PubMed  CAS  Google Scholar 

  106. Charest, P. G., and Bouvier, M. (2003) Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances β-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. J. Biol. Chem. 278, 41541–41551.

    PubMed  CAS  Google Scholar 

  107. Kraft, K., Olbrich, H., Majoul, I., Mack, M., Proudfoot, A., and Oppermann, M. (2001) Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 that regulate signaling and receptor internalization. J. Biol. Chem. 276 34408–34418.

    PubMed  CAS  Google Scholar 

  108. Hasbi, A., Devost, D., Laporte, S. A., and Zingg, H. H. (2004) Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. Mol. Endocrinol. 18, 1277–1286.

    PubMed  CAS  Google Scholar 

  109. Breit, A., Lagace, M., and Bouvier, M. (2004) Hetero-oligomerization between β2- and β3-adrenergic receptors generates a β-adrenergic signaling unit with distinct functional properties. J. Biol. Chem. 279, 28756–28765.

    PubMed  CAS  Google Scholar 

  110. Witherow, D. S., Tovey, S. C., Wang, Q., Willars, G. B., and Slepak, V. Z. (2003) Gβ5-RGS7 inhibits Gαq-mediated signaling via a direct protein-protein interaction. J. Biol. Chem. 278, 21307–21313.

    PubMed  CAS  Google Scholar 

  111. Weiss, T. S., Chamberlain, C. E., Takeda, T., Lin, P., Hahn, K. M., and Farquhar, M. G. (2001) Gαi3 binding to calnuc on Golgi membranes in living cells monitored by fluorescence resonance energy transfer of green fluorescent protein fusion proteins. Proc. Natl. Acad. Sci. U.S.A. 98, 14961–14966.

    PubMed  CAS  Google Scholar 

  112. Lohse, M. J., Vilardaga, J.-P., and Bunemann, M. (2003) Direct optical recording of intrinsic efficacy at a G protein-coupled receptor. Life Sci. 74, 397–404.

    PubMed  CAS  Google Scholar 

  113. Violin, J. D., Zhang, J., Tsien, R. Y., and Newton, A. C. (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909.

    PubMed  CAS  Google Scholar 

  114. Ting, A. Y., Kain, K. H., Klemke, R. L., and Tsien, R. Y. (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. U.S.A. 98, 15003–15008.

    PubMed  CAS  Google Scholar 

  115. Offterdinger, M., Georget, V., Girod, A., and Bastiaens, P.I.H. (2004) Imaging phosphorylation dynamics of the epidermal growth factor receptor. J. Biol. Chem. 279, 36972–36981.

    PubMed  CAS  Google Scholar 

  116. Zaccolo, M., De Giorgi, F., Cho, C. Y., et al. (2000) A genetically encoded fluorescent indicator for cAMP in living cells. Nat. Cell Biol. 2, 25–29.

    PubMed  CAS  Google Scholar 

  117. Mongillo, M., McSorley, T., Evellin, S., et al. (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ. Res. 95, 67–75.

    PubMed  CAS  Google Scholar 

  118. Nikolaev, V. O., Bunemann, M., Hein, L., Hannawacker, A., and Lohse, M. J. (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215–37218.

    PubMed  CAS  Google Scholar 

  119. Tanimura, A., Nezu, A., Morita, T., Turner, R. J., and Tojyo, Y. (2004) Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J. Biol. Chem. 279, 38095–38098.

    PubMed  CAS  Google Scholar 

  120. Zaccolo, M. (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ. Res. 94, 866–873.

    PubMed  CAS  Google Scholar 

  121. Gaits, F., and Hahn, K. (2003) Shedding light on cell signaling: interpretation of FRET biosensors. Sci. STKE 2003, pe3.

    PubMed  Google Scholar 

  122. Milligan, G. (2003) High-content assays for ligand regulation of G-protein-coupled receptors. Drug Discov. Today 8, 579–585.

    PubMed  CAS  Google Scholar 

  123. Yu, H. West, M., Keon, B. H., et al. (2003) Measuring drug action in the cellular context using protein-fragment complementation assays. Assay Drug Dev. Technol. 1, 811–822.

    PubMed  CAS  Google Scholar 

  124. Remy, I., and Michnick, S. W. (2004) Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol. Cell. Bio. 24, 1493–1504.

    CAS  Google Scholar 

  125. Michnick, S. W. (2004) Proteomics in living cells. Drug Discov. Today 9, 262–267.

    PubMed  CAS  Google Scholar 

  126. Michnick, S. W. (2003) Protein fragment complementation strategies for biochemical network mapping. Curr. Opin. Biotech. 14, 610–617.

    PubMed  CAS  Google Scholar 

  127. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    PubMed  CAS  Google Scholar 

  128. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O’Shea, E. K. and Weissman, J. S. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741.

    PubMed  CAS  Google Scholar 

  129. Zaccolo, M., and Pozzan, T. (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711–1715.

    PubMed  CAS  Google Scholar 

  130. Terskikh, A. V., Fradkov, A. F., Zaraisky, A. G., Kajava, A. V., and Angres, B. (2002) Analysis of DsRed mutants: Space around the fluorophore accelerates fluorescence development. J. Biol. Chem. 277, 7633–7636.

    PubMed  CAS  Google Scholar 

  131. Axelrod, D. (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145.

    PubMed  CAS  Google Scholar 

  132. Riven, I., Kalmanzon, E., Segev, L., and Reuveny, E. (2003) Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38, 225–235.

    PubMed  CAS  Google Scholar 

  133. Rebois, R. V., Allen, B. G., and Hebert, T. E. (2004) The targetable G protein proteome: where is the next generation of drug targets? Drug Discov. Today 3, 104–111.

    CAS  Google Scholar 

  134. Kamiva, T., Saitoh, O., Yoshioka, K., and Nakata, H. (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem. Biophys. Res. Commun. 306, 544–549.

    Google Scholar 

  135. Stanasila, L., Perez, J.-B., Vogel, H., and Cotecchia, S. (2003) Oligomerization of the α1a- and α1b-adrenergic receptor subtypes: potential implications in receptor internalization. J. Biol. Chem. 278, 40239–40251.

    PubMed  CAS  Google Scholar 

  136. Hansen, J. L., Theilade, J., Haunso, S., and Sheikh, S. P. (2004) Oligomerization of wild type and nonfunctional mutant angiotensin II type I receptors inhibits Gαq protein signaling but not ERK activation. J. Biol. Chem. 279, 24108–24115.

    PubMed  CAS  Google Scholar 

  137. Jensen, A. A., Hansen, J. L., Sheikh, S. P., and Brauner-Osborne, H. (2002) Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Eur. J. Biochem. 269, 5076–5087.

    PubMed  CAS  Google Scholar 

  138. Cheng, Z.-J., and Miller, L. J. (2001) Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276, 48040–48047.

    PubMed  CAS  Google Scholar 

  139. Horvat, R. D., Roess, D. A., Nelson, S. E., Barisas, B. G., and Clay, C. M. (2001) Binding of agonist but not antagonist leads to fluorescence resonance energy transfer between intrinsically fluorescent gonadotropin-releasing hormone receptors. Mol. Endocrinol. 15, 695–703.

    PubMed  CAS  Google Scholar 

  140. Roess D. A., and Smith, S. M. L. (2003) Self-association and raft localization of functional luteinizing hormone receptors. Biol. Reprod. 69, 1765–1770.

    PubMed  CAS  Google Scholar 

  141. Horvat, R. D., Barisas, B. G., and Roess, D. A. (2001) Luteinizing hormone receptors are self-associated in slowly diffusing complexes during receptor desensitization. Mol. Endocrinol. 15, 534–542.

    PubMed  CAS  Google Scholar 

  142. Hunzicker-Dunn, M., Barisas, G., Song, J., and Roess, D. A. (2003) Membrane organization of luteinizing hormone receptors differs between actively signaling and desensitized receptors. J. Biol. Chem. 278, 42744–42749.

    PubMed  CAS  Google Scholar 

  143. Dinger, M. C., Bader, J. E., Kobor, A. D., Kretzschmar, A. K., and Beck-Sickinger, A. G. (2003) Homodimerization of neuropeptide Y receptors investigated by fluorescence resonance energy transfer in living cells. J. Biol. Chem. 278, 10562–10571.

    PubMed  CAS  Google Scholar 

  144. Berglund, M. M., Schober, D. A., Esterman, M. A., and Gehlert, D. R. (2003) Neuropeptide Y Y4 receptor homodimers dissociate upon agonist stimulation. J. Pharmacol. Exp. Ther. 307, 1120–1126.

    PubMed  CAS  Google Scholar 

  145. Pfeiffer, M., Kirscht, S., Stumm, R., et al. (2003) Heterodimerization of substance P and μ-opioid receptors regulates receptor trafficking and resensitization. J. Biol. Chem. 278, 51630–51637.

    PubMed  CAS  Google Scholar 

  146. Devost, D., and Zingg, H. H. (2004) Homo- and heterodimeric complex formations of the human oxytocin receptor. J. Neuroendocr. 16, 372–377.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Victor Rebois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hébert, T.E., Galés, C. & Rebois, R.V. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and In situ by using fluorescence-based techniques. Cell Biochem Biophys 45, 85–109 (2006). https://doi.org/10.1385/CBB:45:1:85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:1:85

Index Entries

Navigation