Skip to main content
Log in

Prolonged high-pressure treatments in mammalian skeletal muscle result in loss of functional sodium channels and altered calcium channel kinetics

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Activation and inactivation of ion channels involve volume changes from conformal rearrangements of channel proteins. These volume changes are highly susceptible to changes in ambient pressure. Depending on the pressure level, channel function may be irreversibly altered by pressure. The corresponding structural changes persist through the post-decompression phase. High-pressure applications are a useful tool to evaluate the pressure dependence as well as pressure limits for reversibility of such alterations. Mammalian cells are only able to tolerate much lower pressures than microorganisms. Although some limits for pressure tolerance in mammalian cells have been evaluated, the mechanisms of pressure-induced alteration of membrane physiology, in particular of channel function, are unknown. To address this question, we recorded fast inward sodium (INa) and slowly activating L-type calcium (ICa) currents in single mammalian muscle fibers in the post-decompression phase after a prolonged 3-h, high-pressure treatment of up to 20 MPa. INa and ICa peak amplitudes were markedly reduced after pressure treatment at 20 MPa. This was not from a general breakdown of membrane integrity as judged from in situ high-pressure fluorescence microscopy. Membrane integrity was preserved even for pressures as high as 35 MPa at least for pressure applications of shorter durations. Therefore, the underlying mechanisms for the observed amplitude reductions have to be determined from the activation (time-to-peak [TTP]) and inactivation (τdec) kinetics of INa and ICa. No major changes in INa kinetics, but marked increases, both in TTP and τdec for ICa, were detected after 20 MPa. The apparent molecular volume changes (activation volumes) ΔV ‡ for the pressure-dependent irreversible alteration of channel gating approached zero for Na+ channels. For Ca2+ channels, ΔV‡ was very large, with approx 2.5-fold greater values for channel activation than inactivation (approx 210 Å3). We conclude, that in skeletal muscle, high pressure differentially and irreversibly affects the gating properties and the density of functional Na+ and Ca2+ channels. Based on these results, a model of high pressure-induced alterations to the channel conformation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macdonald, A. G. (2002) Experiments on ion channels at high pressure. Biochim. Biophys. Acta 1595, 387–389.

    PubMed  CAS  Google Scholar 

  2. Hall, A. C., Pickles, D. M., and Macdonald, A. G. (1993) Aspects of eukaryotic cells, in Effects of High Pressure on Biological Systems (Macdonald, A. G., ed.). Springer Verlag Heidelberg, New York, 1993, pp. 30–85.

    Google Scholar 

  3. Ornhagen, H. C., and Sigurdsson, S. B. (1981) Effects of high hydrostatic pressure on rat atria muscle. Undersea Biomed. Res. 8, 113–120.

    PubMed  CAS  Google Scholar 

  4. Goldinger, J. M., Kang, B. S., Choo, Y. E., Paganelli, C. V., and Hong, S. K. (1980) Effect of hydrostatic pressure on ion trasport and metabolism in human erythrocytes. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 49, 224–231.

    CAS  Google Scholar 

  5. Crenshaw, H. C., Allen, J. A., Skeen, V., Harris, A., and Salmon, E. D. (1996) Hydrostatic pressure, has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin and cytokeratin in mammalian tissue cells. Exp. Cell Res. 227, 285–297.

    Article  PubMed  CAS  Google Scholar 

  6. Macdonald, A. G. (1997) Effect of high hydrostatic pressure on the BK channel in bovine chromaffin cells. Biophys. J. 73, 1866–1873.

    PubMed  CAS  Google Scholar 

  7. Kress, K. R., Friedrich, O., Ludwig, H., and Fink, R. H. A. (2001) Reversibility of high pressure effects on the contractility of skeletal muscle. J. Mus. Res. Cell Mot. 22, 379–389.

    Article  CAS  Google Scholar 

  8. Friedrich, O., Kress, K. R., Ludwig, H., and Fink, R. H. A. (2002) Membrane ion conductances of mammalian skeletal muscle in the post-decompression state after high pressure treatment. J. Membr. Biol. 188, 11–22.

    Article  PubMed  CAS  Google Scholar 

  9. Kaarniranta, K., Elo, M. A., Sironen, R. K., Karjalainen, H. M., Helminen, H. J., and Lammi, M. J. (2003) Stress response of mammalian cells to high hydrostatic pressure. Biorheology 40, 87–92.

    PubMed  CAS  Google Scholar 

  10. Conti, F., Fiovaranti, R., Segal, J. R., and Stühmer, W. (1982) Pressure dependence of the sodium currents of squid giant axon. J. Membr. Biol. 69, 23–34.

    Article  PubMed  CAS  Google Scholar 

  11. Conti, F, Fiovaranti, R., Segal, J. R., and Stühmer, W. (1982) Pressure dependence of the potassium currents of squid giant axon. J. Membr. Biol. 69, 35–40.

    Article  PubMed  CAS  Google Scholar 

  12. Iwasaki, T. and Yamamoto, K. (2002) Effect of high hydrostatic pressure on chicken myosin subfragment-1. Int. J. Biol. Macromol. 30, 227–232.

    Article  PubMed  CAS  Google Scholar 

  13. Smeller, L. (2002) Pressure-temperature phase diagrams of biomolecules. Biochim. Biophys. Acta 1595, 11–29.

    PubMed  CAS  Google Scholar 

  14. De Felice, F. G., Soares, V. C., and Ferreira, S. T. (1999) Subunit dissociation and inactivation of pyruvate kinase by hydrostatic pressure. Eur. J. Biochem. 266, 163–169.

    Article  PubMed  Google Scholar 

  15. Gross, M. and Jaenicke, R. (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function, and assembly of proteins and protein complexes. Eur. J. Biochem. 221, 617–630.

    Article  PubMed  CAS  Google Scholar 

  16. Sharma, A., Scott, J. H., Cody, G. D., Fogel, M. L., Hazen, R. M., Hemley, R. J., and Huntress, W. T. (2002) Microbial activity at gigapascal pressures. Science 295, 1514–1516.

    Article  PubMed  CAS  Google Scholar 

  17. Heinemann, S. H., Conti, F., Stühmer, W., and Neher, E. (1987) Effects of high pressure on membrane processes: sodium channels, calcium channels, and exocytosis. J. Gen. Physiol. 90, 765–778.

    Article  PubMed  CAS  Google Scholar 

  18. Kontis, K. J. and Goldin, A. L. (1997) Sodium channel inactivation is altered by substitution of voltage sensor positive charges. J. Gen. Physiol. 110, 403–413.

    Article  PubMed  CAS  Google Scholar 

  19. Chen, L. Q., Santarelli, V., Horn, R., and Kallen, R. G. (1996) A unique role of the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108, 549–556.

    Article  PubMed  CAS  Google Scholar 

  20. Groome, J. R., Fujimoto, E., George, A. L., and Ruben, P. C. (1999) Differential effects of homologous S4 mutations in human skeletal muscle sodium channels on deactivation gating from open and inactivated states. J. Physiol. 516, 687–698.

    Article  PubMed  CAS  Google Scholar 

  21. Stühmer, W., Conti, F., Suzuki, H., et al. (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603.

    Article  PubMed  Google Scholar 

  22. Bezanilla, F. (2002) Perspective: voltage-sensor movements. J. Gen. Physiol. 120, 465–473.

    Article  PubMed  CAS  Google Scholar 

  23. Chanda, B. and Bezanilla, F. (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channels during activation. J. Gen. Physiol. 120, 629–645.

    Article  PubMed  CAS  Google Scholar 

  24. Meyer, R. and Heinemann, S. H. (1997) Temperature and pressure dependence of Shaker K+ channel N- and C-type inactivation. Eur. Biophys. J. 26, 433–445.

    Article  PubMed  CAS  Google Scholar 

  25. Weber, G. and Drickamer, H. G. (1983) The effect of high pressure upon proteins and other biomolecules. Q. Rev. Biophys. 16, 89–112.

    PubMed  CAS  Google Scholar 

  26. Kendig, J. J. (1984) Ionic currents in vertebrate myelinated nerve at hyperbaric pressure. Amer. J. Physiol. 246, C84-C90.

    PubMed  CAS  Google Scholar 

  27. Taulier, N. and Chalikian, T.V. (2002) Compressibility of protein transients. Biochim. Biophys. Acta 1595, 48–70.

    PubMed  CAS  Google Scholar 

  28. Harper, A. A. Macdonald, A. G., and Wann, K. T. (1981) The action of high hydrostatic pressure on the membrane currents of Helix neurones. J. Physiol. 311, 325–339.

    PubMed  CAS  Google Scholar 

  29. Grossman, Y. and Kendig, J. J. (1984) Pressure and temperature: time-dependent modulation of membrane properties in a bifurcating axon. J. Neurophysiol. 52, 692–708.

    Google Scholar 

  30. Jurkat-Rott, K. and Lehmann-Horn, F. (2001) Human muscle voltage-gated ion channels and hereditary disease. Cur. Opinion Pharmacol. 1, 280–287.

    Article  CAS  Google Scholar 

  31. Hall, A. C., Ellroy, J. C., and Klein, R. A. (1982) Pressure and temperature effects on human red cell cation transport. J. Membr. Biol. 68, 47–56.

    Article  PubMed  CAS  Google Scholar 

  32. Friedrich, O., Ehmer, Th., and Fink, R. H. A. (1999) Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibers. J. Physiol. 517, 757–770.

    Article  PubMed  CAS  Google Scholar 

  33. Hu, L. Y., Tian, S. M., Ye, Q. Z., and Ruan, K. C. (2000) Comparison of the catalytic domains of collagenase-1 and stromelysin-1. Sheng Wu Hua xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32, 409–412.

    CAS  Google Scholar 

  34. Friedrich, O., Ehmer, Th., Uttenweiler, D., Vogel, M., Barry, P. H., and Fink, R. H. A. (2001) Numerical analysis of Ca2+ depletion in the transverse tubular system of mammalian muscle. Biophys. J. 80, 2046–2055.

    Article  PubMed  CAS  Google Scholar 

  35. Desaphy, J. F., Pierno, S., Leoty, C., George, A. L. Jr., De Luca, A., and Conte Camerino, D. (2001) Skeletal muscle disuse induces fibre type-dependent enhancement of Na+ channel expression. Brain 124, 1100–1113.

    Article  PubMed  CAS  Google Scholar 

  36. Macdonald, A. G. (2001) Effects of high pressure on cellular processes, in Cell Physiology Source Book: A Molecular Approach (Sperelakis, N., ed.). 3rd ed. Academic Press, San Diego, CA, pp. 1003–1023.

    Google Scholar 

  37. Hartmann, M., Kreuss, M., and Sommer, K. (2004) High pressure microscopy—a powerful tool for monitoring cells and macromolecules under high hydrostatic pressure. Cell. Mol. Biol. 50, 479–484.

    PubMed  CAS  Google Scholar 

  38. Hartmann, M., Pfeifer, F., Dornheim, G., and Sommer, K. (2003) HPDS—Hochdruckzelle zur Beobachtung mikroskopischer Phänomene unter Hochdruck. Chemie Ingenieur Technik 75, 1763–1767.

    Article  CAS  Google Scholar 

  39. Macklis, J. D. and Madison, R. D. (1990) Progressive incorporation of propidium iodide in cultured mouse neurons correlates well with declining electrophysiological status: a fluorescence scale of membrane integrity. J. Neurosci. Methods 31, 43–46.

    Article  PubMed  CAS  Google Scholar 

  40. Scoltock, A. B., Bortner, C. D., St.-J. Bird, G., Putney, J. W. Jr., and Cidlowski, J. A. (2000) A selective requirement for elevanted calcium in DNA degradation, but not early events in anti-FAS-induced apoptosis. J. Biol. Chem. 275, 30586–30596.

    Article  PubMed  CAS  Google Scholar 

  41. Crenshaw, H. C. and Salmon, E. D. (1996) Hydrostatic pressure to 400 atm does not induce changes in the cytosolic concentration of Ca2+ in mouse fibroblasts: measurements using fura-2 fluorescence. Exp. Cell Res. 227, 285–297.

    Article  PubMed  CAS  Google Scholar 

  42. Kirsch, W. G., Uttenweiler, D., and Fink, R. H. A. (2001) Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J. Physiol. 537, 379–389.

    Article  PubMed  CAS  Google Scholar 

  43. Mannuzzu, L. M. and Isacoff, E. Y. (2000) Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J. Gen. Physiol. 115, 257–268.

    Article  PubMed  CAS  Google Scholar 

  44. Friedrich, O., Both, M., Gillis, J. M., Chamberlain, J. S., and Fink, R. H. A. (2004) Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J. Physiol. 555, 251–265.

    Article  PubMed  CAS  Google Scholar 

  45. Gee, S. H., Madhavan, R., Levinson, S. R., Caldwell, J. H., Sealock, R., and Froehner, S. C. (1998) Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J. Neurosci. 18, 128–137.

    PubMed  CAS  Google Scholar 

  46. Gomez, A. M., Kerfant, B. G., and Vassort, G. (2000) Microtubule disruption modulates Ca2+ signalling in rat cardiac myocytes. Circ. Res. 86, 30–36.

    PubMed  CAS  Google Scholar 

  47. Verjovski-Almeida, S., Kurtenbach, E., Amorim, A. F., and Weber, G. (1986) Pressure-induced dissociation of solubilized sarcoplasmic reticulum ATPase. J. Biol. Chem. 261, 9872–9878.

    PubMed  CAS  Google Scholar 

  48. Coelho-Sampaio, T., Ferriera, S. T., Benaim, G., and Vieyra, A. (1991) Dissociation of purified erythrocyte Ca2+ ATPase by hydrostatic pressure. J. Biol. Chem. 266, 22266–22272.

    PubMed  CAS  Google Scholar 

  49. Pin, S., Royer, C. A., Gratton, E., Alpert, B., and Weber, G. (1990) Subunit interactions in haemoglobin probed by fluorescence and high pressure techniques. Biochemistry 29, 9194–9202.

    Article  PubMed  CAS  Google Scholar 

  50. Smeller, L., Rubens, P., and Heremans, K. (1999) Pressure effect on the temperature induced unfolding and tendency to aggregate of myoglobin. Biochemistry 38, 3816–3820.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, O., Kress, K.R., Hartmann, M. et al. Prolonged high-pressure treatments in mammalian skeletal muscle result in loss of functional sodium channels and altered calcium channel kinetics. Cell Biochem Biophys 45, 71–83 (2006). https://doi.org/10.1385/CBB:45:1:71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:1:71

Index Entries

Navigation