Skip to main content
Log in

Regulation of the Pleuronectes americanus Na+/H+ exchanger by osmotic shrinkage, β-adrenergic stimuli, and inhibition of Ser/Thr protein phosphatases

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The ubiquitous Na+/H+ exchanger NHE1 is regulated by protein phosphorylation events, but the mechanisms involved are incompletely understood. We recently cloned NHE1 from the red blood cells of the winter flounder, Pleuronectes americanus (paNHE1), and demonstrated its activation by osmotic cell shrinkage, β-adrenergic stimuli, and the Ser/Thr protein phosphatase PP1 and PP2A inhibitor calyculin A (CLA) (Pedersen et al. [2003] Am. J. Physiol. 284, C1561–C1576). Here, we investigate the mechanisms involved in paNHE1 activation by these stimuli. Osmotic shrinkage and CLA were only partially additive in their effects on paNHE1 activity, and CLA-mediated paNHE1 activation was inhibited by osmotic cell swelling. Activation by the β-adrenergic agonist isoproterenol (IP) was fully additive to activation by osmotic shrinkage or CLA. IP-mediated, but neither shrinkage-nor CLA-mediated paNHE1 activation were associated with an increase in cellular cyclic adenosine monophosphate (cAMP) level. IP-mediated activation was partially blocked by the protein kinase A (PKA) inhibitor H89 (10μM), wherease shrinkage- and CLA-mediated activation were unaffected. All three stimuli activated paNHE1 in a manner unaffected by inhibitors of protein kinase C (calphostin C, 5 μM) and protein kinase G (KT5823, 10 μM) as well as of myosin light chain kinase (ML-7, 10 μM). IP-mediated, but not shrinkage-mediated, paNHE1 activation was associated with an increase in serine phosphorylation of the paNHE1 protein. It is suggested that paNHE1 activation by osmotic shrinkage and by PP1/PP2A inhibition involves partially convergent signaling pathways, whereas activation of paNHE1 by β-adrenergic stimuli is mediated by a separate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wakabayashi, S., Shigekawa, M., and Pouyssegur, J. (1997) Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev. 77, 51–74.

    PubMed  CAS  Google Scholar 

  2. Putney, L. K., Denker, S. P., and Barber, D. L. (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions, Annu. Rev. Pharmacol. Toxicol. 42, 527–552.

    Article  PubMed  CAS  Google Scholar 

  3. Orlowski, J. and Grinstein, S. (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. 447, 549–565.

    Article  PubMed  CAS  Google Scholar 

  4. Pedersen, S. F. and Cala, P. M. (2004) Comparative biology of the ubiquitous Na+/H+ exchanger, NHE1: lessons from erythrocytes. J. Exp. Zoolog. Part A Comp. Exp. Biol. 301, 569–578.

    PubMed  Google Scholar 

  5. McLean, L. A., Roscoe, J., Jorgensen, N. K., Gorin, F. A., and Cala, P. M. (2000) Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am. J. Physiol. Cell Physiol. 278, C676-C688.

    PubMed  CAS  Google Scholar 

  6. Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R., Gilad, E. (2004) CD44 interaction with Na+/H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 279, 26991–27007.

    Article  PubMed  CAS  Google Scholar 

  7. Karmazyn, M., Sostaric, J. V., and Gan, X. T. (2001) The myocardial Na+/H+ exchanger: a potential therapeutic target for the prevention of myocardial ischaemic and reperfusion injury and attenuation of postinfarction heart failure. Drugs 61, 375–389.

    Article  PubMed  CAS  Google Scholar 

  8. Bianchini, L., Woodside, M., Sardet, C., Pouyssegur, J., Takai, A., and Grinstein, S. (1991) Okadaic acid, a phosphatase inhibitor, induces activation and phosphorylation of the Na+/H+ antiport. J. Biol. Chem. 266, 15406–15413.

    PubMed  CAS  Google Scholar 

  9. Levine, S. A., Montrose, M. H., Tse, C. M., and Donowitz, M. (1993) Kinetics and regulation of three cloned mammalian Na+/H+ exchangers stably expressed in a fibroblast cell line. J. Biol. Chem. 268, 25527–25535.

    PubMed  CAS  Google Scholar 

  10. Borgese, F., Malapert, M., Fievet, B., Pouyssegur, J., and Motais, R. (1994) The cytoplasmic domain of the Na+/H+ exchangers (NHEs) dictates the nature of the hormonal response: behavior of a chimeric human NHE1/trout beta NHE antiporter. Proc. Natl. Acad. Sci. USA 91, 5431–5435.

    Article  PubMed  CAS  Google Scholar 

  11. Kandasamy, R. A., Yu, F. H., Harris, R., Boucher, A., Hanrahan, J. W., and Orlowski, J. (1995) Plasma membrane Na+/H+ exchanger isoforms (NHE-1,-2, and-3) are differentially responsive to second messenger agonists of the protein kinase A and C pathways. J. Biol. Chem. 270, 29209–29216.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, G. A., Brett, C. L., and Church, J. (1998). Effects of noradrenaline on intracellular pH in acutely dissociated adult rat hippocampal CA1 neurones. J. Physiol. 512, 487–505.

    Article  PubMed  CAS  Google Scholar 

  13. Bourikas, D., Kaloyianni, M., Bougoulia, M., Zolota, Z., and Koliakos, G. (2003) Modulation of the Na+/H+ antiport activity by adrenaline on erythrocytes from normal and obese individuals. Mol. Cell Endocrinol. 205, 141–150.

    Article  PubMed  CAS  Google Scholar 

  14. Romero, M., Guizouarn, H., Pellissier, B., Garcia-Romeu, F., and Motais, R. (1996) The erythrocyte Na+/H+ exchangers of eel (Anguilla anguilla) and rainbow trout (Oncorhynchus mykiss): a comparative study. J. Exp. Biol. 199, 415–426.

    PubMed  CAS  Google Scholar 

  15. Malapert, M., Guizouarn, H., Fievet, B., Jahns, R., Garcia-Romeu, F., Motais, R., and Borgese, F. (1997) Regulation of Na+/H+ antiporter in trout red blood cells. J. Exp. Biol. 200, 353–360.

    PubMed  CAS  Google Scholar 

  16. Gibson, J.S., Cossins, A.R., and Ellory, J. C. (2000) Oxygensensitive membrane transporters in vertebrate red cells. J. Exp. Biol. 203, 1395–1407.

    PubMed  CAS  Google Scholar 

  17. Soulsby, M. D., Alzayady, K., Xu, Q., and Wojcikiewicz, R. J. (2004) The contribution of serine residues 1588 and 1755 to phosphorylation of the type I inositol 1,4,5-trisphosphate receptor by PKA and PKG. FEBS Lett. 557, 181–184.

    Article  PubMed  CAS  Google Scholar 

  18. Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J., and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of Threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496–34504.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang, H., Colbran, J. L., Francis, S. H., and Corbin, J. D. (1992) Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J. Biol. Chem. 267, 1015–1019.

    PubMed  CAS  Google Scholar 

  20. Schulte, E. A., Hohendahl, A., Stegemann, H., Hirsch, J. R., Saleh, H., and Schlatter, E. (1999) Natriuretic peptides and diadenosine polyphosphates modulate pH regulation of rat mesangial cells. Cell Physiol. Biochem. 9, 310–322.

    Article  PubMed  CAS  Google Scholar 

  21. Wakabayashi, S., Bertrand, B., Shigekawa, M., Fafournoux, P., and Pouyssegur, J. (1994) Growth factor activation and “H+-sensing” of the Na+/H+ exchanger isoform 1 (NHE1). Evidence for an additional mechanism not requiring direct phosphorylation. J. Biol. Chem. 269, 5583–5588.

    PubMed  CAS  Google Scholar 

  22. Grinstein, S., Woodside, M., Sardet, C., Pouyssegur, J., and Rotin, D. (1992) Activation of the Na+/H+, antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J. Biol. Chem. 267, 23823–23828.

    PubMed  CAS  Google Scholar 

  23. Pedersen, S. F., Varming, C., Christensen, S. T., and Hoffmann, E. K. (2002) Mechanisms of activation of NHE by cell shrinkage and by calyculin A in Ehrlich ascites tumor cells. J. Membr. Biol. 189, 67–81.

    Article  CAS  Google Scholar 

  24. Shrode, L. D., Klein, J. D., O’Neill, W. C., and Putnam, R. W. (1995) Shrinkage-induced activation of Na+/H+ exchange in primary rat astrocytes: role of myosin light-chain kinase. Am. J. Physiol. 269, C257-C266.

    PubMed  CAS  Google Scholar 

  25. Bertrand, B., Wakabayashi, S., Ikeda, T., Pouyssegur, J., and Shigekawa, M. (1994) The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J. Biol. Chem. 269, 13703–13709.

    PubMed  CAS  Google Scholar 

  26. Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H., and Barber, D. L. (2000) Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell 6, 1425–1436.

    Article  PubMed  CAS  Google Scholar 

  27. Li, X., Alvarez, B., Casey, J. R., Reithmeier, R. A., and Fliegel, L. (2002) Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. J. Biol. Chem. 277, 36085–36091.

    Article  PubMed  CAS  Google Scholar 

  28. Aharonovitz, O., Zaun, H. C., Balla, T., York, J. D., Orlowski, J., and Grinstein, S. (2000) Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 213–224.

    Article  PubMed  CAS  Google Scholar 

  29. Howe, A. K., Gaillard, S., Bennett, J. S., and Rundell, K. (1998) Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. J. Virol. 72, 9637–9644.

    PubMed  CAS  Google Scholar 

  30. Pedersen, S. F., King, S. A., Rigor, R. R., Zhuang, Z., Warren, J. M., and Cala, P. M. (2003) Molecular cloning of NHE1 from winter flounder RBCs: activation by osmotic shrinkage, cAMP, and calyculin A. Am. J. Physiol. Cell Physiol. 284, C1561-C1576.

    PubMed  CAS  Google Scholar 

  31. Garnovskaya, M. N., Mukhin, Y. V., Vlasova, T. M., and Raymond, J. R. (2003) Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J. Biol. Chem. 278, 16908–16915.

    Article  PubMed  CAS  Google Scholar 

  32. Pedersen, S. F., Holt, M. E., King, S. A., and Cala, P. M. (2003). Activation of paNHE1 by osmotic shrinkage, isoproterenol, and calyculin A: evidence for involvement of distinct signaling pathways [abstract]. FASEB J. 18, 59.

    Google Scholar 

  33. Pedersen, S. F., Holt, M. E., King, S. A., and Cala, P. M. (2004) Signal transduction mechanisms involved in the regulation of NHE1 from Pleuronectes Americanus red blood cells by osmotic shrinkage,-adrenergic stimuli, and calyculin A. Bull. Mt. Desert Island 43, 9–11.

    Google Scholar 

  34. Cala, P. M. (1977) Volume regulation by flournder red blood cells in anisotonic media. J. Gen. Physiol. 69, 537–552.

    Article  PubMed  CAS  Google Scholar 

  35. Rotin, D. and Grinstein, S. (1989) Impaired cell volume regulation in Na+/H+ exchange-deficient mutants. Am. J. Physiol. 257, C1158-C1165.

    PubMed  CAS  Google Scholar 

  36. Boyarsky, G., Ganz, M. B., Sterzel, R. B., and Boron, W. F. (1988) pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3-. Am. J. Physiol. 255, C844-C856.

    PubMed  CAS  Google Scholar 

  37. Lytle, C., Xu, J. C., Biemesderfer, D., and Forbush, B. III (1995) Distribution and diversity of Na−K−Cl cotransport proteins: a study with monoclonal antibodies. Am. J. Physiol. 269, C1496-C1505.

    PubMed  CAS  Google Scholar 

  38. Laroche-Joubert, N., Marsy, S., Michelet, S., Imbert-Teboul, M., and Doucet, A. (2002) Protein kinase A-independent activation of ERK and H K-ATPase by cAMP in native kidney cells: role of Epac I. J. Biol. Chem. 277, 18598–18604.

    Article  PubMed  CAS  Google Scholar 

  39. Ma, Y. C. and Huang, X. Y. (2002) Novel signaling pathway through the beta-adrenergic receptor. Trends Cardiovasc. Med. 12, 46–49.

    Article  PubMed  CAS  Google Scholar 

  40. Lincoln, T. M., Cornwell, T. L., and Taylor, A. E. (1990) cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am. J. Physiol. 258, C399-C407.

    PubMed  CAS  Google Scholar 

  41. King, S. A., Pedersen, S. F., and Cala, P. M. (2005) Two distinct domains involved in amiloride inhibition of the Na+/H+ exchanger NHE1 [abstract]. FASEB J. 19, 1585.

    Article  CAS  Google Scholar 

  42. Fuster, D., Moe, O. W., and Hilgemann, D. W. (2004) Lipid-and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc. Natl. Acad. Sci. U SA 101, 10482–10487.

    Article  CAS  Google Scholar 

  43. Oliver, C. J. and Shenolikar, S. (1998) Physiological importance of protein phosphatase inhibitors. Font Biosci. 3, D961-D972.

    CAS  Google Scholar 

  44. Janssens, V. and Goris, J. (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–349.

    Article  PubMed  CAS  Google Scholar 

  45. Parker, J. C., Colclasure, G. C., and McManus, T. J. (1991) Coordinated regulation of shrinkage-induced Na/H exchange and swelling-induced [K−Cl] cotransport in dog red cells. Further evidence from activation kinetics and phosphatase inhibition. J. Gen. Physiol. 98, 869–880.

    Article  PubMed  CAS  Google Scholar 

  46. Bize, I., Guvenc, B., Robb, A., Buchbinder, G., and Brugnara, C. (1999) Serine/threonine protein phosphatases and regulation of K−Cl cotransport in human erythrocytes. Am. J. Physiol. 277, C926-C936.

    PubMed  CAS  Google Scholar 

  47. Kregenow, F. M., Robbie, D. E., and Orloff, J. (1976) Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. Am. J. Physiol. 231, 306–311.

    PubMed  CAS  Google Scholar 

  48. Orlic, T., Loomis, W. H., Shreve, A., Namiki, S., and Junger, W. G. (2002) Hypertonicity increases cAMP in PMN and blocks oxidative burst by PKA-dependent and-independent mechanisms. Am. J. Physiol. Cell Physiol. 282, C1261-C1269.

    PubMed  CAS  Google Scholar 

  49. Hoffmann, E. K. and Pedersen, S. F. (1998) Sensors and signal transduction in the activation of cell volume regulatory ion transport systems. Contrib. Nephrol. 123, 50–78.

    Article  PubMed  CAS  Google Scholar 

  50. Kelley, S. J., Thomas, R., and Dunham, P. B. (2000) Candidate inhibitor of the volume-sensitive kinase regulating K−Cl cotransport: the myosin light chain kinase inhibitor ML-7. J. Membr. Biol. 178, 31–41.

    Article  PubMed  CAS  Google Scholar 

  51. Rivera, A., Ferreira, A., Bertoni, D., Romero, J. R., and Brugnara, C. (2005) Abnormal regulation of Mg2+ transport via Na/Mg exchanger in sickle erythrocytes. Blood 105, 382–386.

    Article  PubMed  CAS  Google Scholar 

  52. Adragna, N. C., White, R. E., Orlov, S. N., and Lauf, P. K. (2000) K−Cl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation. Am. J. Physiol. Cell Physiol. 278, C381-C390.

    PubMed  CAS  Google Scholar 

  53. Zhu, W. Z., Wang, S. Q., Chakir, K., et al. (2003) Linkage of betal-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J. Clin. Invest. 111, 617–25.

    Article  PubMed  CAS  Google Scholar 

  54. Tasken, K. and Anadahl, E. M. (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev. 84, 137–167.

    Article  PubMed  CAS  Google Scholar 

  55. Barber, D. L. and Ganz, M. B. (1992) Guanine nucleotides regulate beta-adrenergic activation of Na−H exchange independently of receptor coupling to Gs. J. Biol. Chem. 267, 20607–20612.

    PubMed  CAS  Google Scholar 

  56. Zuscik, M. J., Porter, J. E., Gaivin, R., and Perez, D. M. (1998) Identification of a conserved switch residue responsible for selective constitutive activation of the beta2-adrenergic receptor. J. Biol. Chem. 273, 3401–3407.

    Article  PubMed  CAS  Google Scholar 

  57. Steer, M. L. and Wood, A. (1981) Inhibitory effects of sodium and other monovalent cations on human platelet adenylate cyclase. J. Biol. Chem. 256, 9990–9993.

    PubMed  CAS  Google Scholar 

  58. Guizouarn, H., Borgese, F., Pellissier, B., Garcia-Romeu, F., and Motais, R. (1995) Regulation of Na+/H+ exchange activity by recruitment of new Na+/H+ exchange activity by recruitment of new Na+/H+ antiporters: effect of calyculin A. Am. J. Physiol. 268, C434-C441.

    PubMed  CAS  Google Scholar 

  59. Pedersen, S. F. (2005) A novel NHE1 from red blood cells of the winter fluounder: regulation by multiple signaling pathways. In: Cell Volume and Signaling. Advances in Experimental Medicine and Biology, vol. 559 (Lauf, P. K. and Adragna, N. C., eds.), pp. 89–98.

  60. Wittbrodt J., Meyer, A., and Schartl, M. (1998) More genes in fish? Bioessays 20, 511–515.

    Article  Google Scholar 

  61. Gray, N. K. and Wickens, M. (1998). Control of translation initiation in animals. Annu. Rev. Cell Dev. Biol. 14, 399–458.

    Article  PubMed  CAS  Google Scholar 

  62. Takahashi, E., Abe, J., Gallis, B., Aebersold, R., Sping, D. J., Krebs, E. G., and Berk, B. C. (1999) p90(RSK) is a serumstimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1 J. Biol. Chem. 274, 20206–20214.

    Article  PubMed  CAS  Google Scholar 

  63. Khaled, A. R., Moor, A. N., Li, A., et al. (2001) Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induced intracellular alkalinization. Mol. Cell Biol. 21, 7545–7557.

    Article  PubMed  CAS  Google Scholar 

  64. Darborg, B., Hoffmann, E. K., and Pedersen, S. F. (2005) Causal relationship between NHE1, NKCC1, MAPKs and ERM proteins after osmotic shrinkage in Ehrlich Lettre mouse ascites tumor cells [abstract]. FASEB J. 19, A1155.

    Google Scholar 

  65. Borgese, F., Sardet, C., Cappadoro, M., Pouyssegur, J., and Motais, R. (1992) Cloning and expression of a cAMP-activated Na+/H+ exchanger: evidence that the cytoplasmic domain mediates hormonal regulation. Proc. Natl. Acad. Sci. U S A 89, 6765–6769.

    Article  PubMed  CAS  Google Scholar 

  66. Guizouarn, H., Borgese, F., Pellissier, B., Garcia-Romeu, F., and Motais, R. (1993) Role of protein phosphorylation and dephosphorylation in activation and desensitization of the cAMP-dependent Na+/H+ antiport. J. Biol. Chem. 268, 8632–8639.

    PubMed  CAS  Google Scholar 

  67. Denker, S. P. and Barber, D. L. (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na−H exchanger NHE1. J. Cell Biol. 159, 1087–1096.

    Article  PubMed  CAS  Google Scholar 

  68. Mukhin, Y. V., Garnovskaya, M. N., Ullian, M. E., and Raymond, J. R. (2004) ERK is regulated by sodium-proton exchanger in rat aortic vascular smooth muscle cells. J. Biol. Chem. 279, 1845–1852.

    Article  PubMed  CAS  Google Scholar 

  69. Weaver, Y. R., Kiessling, K., and Cossins, A. R. (1999) Responses of the Na+/H+ exchanger of european flounder red blood cells to hypertonic, β-adrenergic and acidotic stimuli. J. Exp. Biol. 202, 21–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stine F. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, M.E.V., King, S.A., Cala, P.M. et al. Regulation of the Pleuronectes americanus Na+/H+ exchanger by osmotic shrinkage, β-adrenergic stimuli, and inhibition of Ser/Thr protein phosphatases. Cell Biochem Biophys 45, 1–18 (2006). https://doi.org/10.1385/CBB:45:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:1:1

Index Entries

Navigation