Molecular dynamics simulations applied to the study of subtypes of HIV-1 protease common to Brazil, Africa, and Asia

Abstract

Africa accounts for the majority of HIV-1 infections worldwide caused mainly by the A and C viral subtypes rather than B subtype, which prevails in the United States and Western Europe. In Brazil, B subtype is the major subtype, but F, C, and A also circulate. These non-B subtypes present polymorphisms, and some of them occur at sites that have been associated with drug resistance, including the HIV-1 protease (PR), one important drug target. Here, we report a Molecular Dynamics study of the B and non-B PR complexed with the inhibitor ritonavir to delineate the behavior of each subtype. We compare root mean squared deviation, binding free energy by linear interaction energy approach, hydrogen bonds, and intermolecular contact surface area between inhibitor and PR. From our results, we can provide a basis to understand the molecular mechanism of drug resistance in non-B subtypes. In this sense, we found a decrease of approx 4 kcal/mol in ΔG of binding between B and non-B subtypes. This corresponds to the loss of one hydrogen bond, which is in agreement with our H-bond analysis. Previous experimental affinity studies reported analogous results with inhibition constant values for non-B PR.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hu W. S. and Temin, H. M. (1990) Retroviral recombination and reverse transcription. Science 250, 1227–1233.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Preston, B. D., Poiesz, B. J. and Loeb, L. A. (1988) Fidelity of HIV-1 reverse transcriptase. Science 242, 1168–1171.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M. and Markowitz, M. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Simon, F., Mauclere, P., Roques, P., et al. (1998) Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat. Med. 4, 1032–1037.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Kantor, R. and Katzenstein, D. (2003) Polymorphism in HIV-1 non-subtype B protease and reverse transcriptase and its potential impact on drug susceptibility and drug resistance evolution. AIDS Rev. 5, 25–35.

    PubMed  Google Scholar 

  6. 6.

    Wainberg, M. A. (2004) HIV-1 subtype distribution and the problem of drug resistance. AIDS 18 (Suppl.) 3), S63-S68.

    PubMed  Article  Google Scholar 

  7. 7.

    UNAIDS (2004) AIDS epidemic update: 2004. UNAIDS/WHO, Geneva, Switzerland.

    Google Scholar 

  8. 8.

    Osmanov, S., Pattou, C., Walker, N., Schwardlander, B., Esparza, J. and Charact, W.-U.N.H.I. (2002) Estimated global distribution and regional spread of HIV-1 genetic subtypes in the year 2000. J. Acquir. Immun. Defic. Syndr. 29, 184–190.

    Google Scholar 

  9. 9.

    Soares, M. A., Brindeiro, R. M. and Tanuri, A. (2004) Primary HIV-1 drug resistance in Brazil. AIDS 18 (Suppl.) 3, S9-S13.

    PubMed  Article  Google Scholar 

  10. 10.

    Prabu-Jeyabalan, M., Nalivaika, E. and Schiffer, C. A. (2000) How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J. Mol. Biol. 301, 1207–1220.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Freedberg, D. I., Ishima, R., Jacob, J., et al. (2002) Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 11, 221–232.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Sanches, M., Martins, N. H., Calazans, A., et al. (2004) Crystallization of a non-B and a B mutant HIV protease. Acta Crystallogr. D. Biol. Crystallogr. 60, 1625–1627.

    Article  CAS  Google Scholar 

  13. 13.

    Wlodawer, A. and Vondrasek, J. (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27, 249–284.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Berman, H. M., Westbrook, J., Feng, Z. et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Velazquez-Campoy, A., Vega, S., Fleming, et al. (2003) Protease inhibition in African subtypes of HIV-1. AIDS Rev. 5, 165–171.

    PubMed  Google Scholar 

  16. 16.

    Velazquez-Campoy, A., Todd, M. J., Vega, S. and Freire, E. (2001) Catalytic efficiency and vitality of HIV-1 proteases from African viral subtypes. Proc. Natl. Acad. Sci. USA 98, 6062–6067.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Vicente, A. C., Agwale, S. M., Otsuki, K., et al. (2001) Genetic variability of HIV-1 protease from Nigeria and correlation with protease inhibitors drug resistance. Virus Genes 22, 181–186.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Soares, M. A., De Oliveira, T., Brindeiro, R. M., et al. (2003) A specific subtype C of human immunodeficiency virus type 1 circulates in Brazil. AIDS 17, 11–21.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Caride, E., Hertogs, K., Larder, B., et al. (2001) Genotypic and phenotypic evidence of different drugresistance mutation patterns between B and non-B subtype isolates of human immunodeficiency virus type 1 found in Brazilian patients failing HAART. Virus Genes 23, 193–202.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-Pdb Viewer; an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kempf D. J., Marsh, K. C., Denissen, J. F., et al. (1995) ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. USA 92, 2484–2488.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Laskowski, R. A., Rullmann, J. A., MacArthur M. W., Kaptein, R., and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    van Gunsteren, W. F., Billeter, S. R., Eising, A. A., et al. (1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide. vdt Hochschulverlag AG an der ETH Zürich and BIOMOS b.v., Zürich Groningen.

    Google Scholar 

  24. 24.

    van Aalten, D. M., Bywater, R., Findlay, J. B., Hendlich, M., Hooft, R. W. and Vriend, G. (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des, 10, 255–262.

    PubMed  Article  Google Scholar 

  25. 25.

    van Gunsteren, W. F. and Berendsen, H.J.C. (1987) Groningen Molecular Simulation (GROMOS) Library Manual. BIOMOS b.v., Groningen.

    Google Scholar 

  26. 26.

    Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. (1995) GAUSSIAN94, Revision B.1 Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  27. 27.

    van der Spoel, D., van Buuren, A. R., Apol,, E., et al. (2001) Gromacs User’s Manual version 3.0, Groningen.

  28. 28.

    Berendsen, H.J.C., van der Spoel, D., and van Drunen, R. (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Commun. 91, 43–56.

    Article  CAS  Google Scholar 

  29. 29.

    Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38,27–38.

    Google Scholar 

  30. 30.

    Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., and Hermans, J. (1981) Interaction models for water in relation to protein hydration, in Intermolecular Forces (Pullman, B., ed.), Reidel, Dordrecht, The Netherlands, pp. 331–342.

    Google Scholar 

  31. 31.

    Hess, B., Bekker, H., Berendsen, H. J. C. and Fraaije, J. G. E. M. (1997) LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472.

    Article  CAS  Google Scholar 

  32. 32.

    Miyamoto, S. and Kollman, P. A. (1992) Settle-an analytical version of the shake and rattle algorithm for rigid water models. J. Comput. Chem. 13, 952–962.

    Article  CAS  Google Scholar 

  33. 33.

    Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A., and Haak, J. R. (1984) Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.

    Article  CAS  Google Scholar 

  34. 34.

    Schreiber, H. and Steinhauser, O. (1992) Taming cut-off induced artifacts in molecular dynamics studies of solvated polypeptides. The reaction field method. J. Mol. Biol. 228, 909–923.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Smith, P. E. and Vangunsteren, W. F. (1994) Consistent dielectric-properties of the simple point-charge and extended simple point-charge water models at 277 and 300 K. J. Chem. Phys. 100, 3169–3174.

    Article  CAS  Google Scholar 

  36. 36.

    Hyland, L. J. Tomaszek, T. A., Jr., Roberts, G. D., et al. (1991) Human immunodeficiency virus-1 protease 1. Initial velocity studies and kinetic characterization of reaction intermediates by 18O isotope exchange. Biochemistry 30, 8441–8453.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Hyland, L. J., Tomaszek, T. A., Jr. and Meek, T. D. (1991) Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry 30, 8454–8463.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Okimoto, N., Tsukui, T., Hata, M., Hoshino, T. and Tsuda, M. (2000) Molecular dynamics study of HIV-1 proteasesubstrate complex: roles of the water molecules at the loop structures of the active site. J. Am. Chem. Soc. 122, 5613–5622.

    Article  CAS  Google Scholar 

  39. 39.

    Aqvist, J., Medina, C. and Samuelsson, J. E. (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng. 7, 385–391

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Hulten, J., Bonham, N. M., Nillroth, U., et al. (1997) Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities. J. Med. Chem. 40, 885–897.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Wang, W., Wang, J. and Kollman, P. A. (1999) What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Proteins 34, 395–402.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Aqvist, J., Luzhkov, V. B. and Brandsdal, B. O. (2002) Ligand binding affinities from MD simulations. Accounts Chem. Res. 35, 358–365.

    Article  CAS  Google Scholar 

  43. 43.

    Connolly, M. L. (1983) Solvent-accessible surfaces of proteins and nucleic-acids. Science 221, 709–713.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Koradi, R., Billeter, M. and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32.

    Google Scholar 

  45. 45.

    Wang, W. and Kollman, P. A. (2001) Computational study of protein specificity: the molecular basis of HIV-1 protease drug resistance. Proc. Natl. Acad. Sci. USA. 98, 14,937–14,942.

    CAS  Google Scholar 

  46. 46.

    Brandsdal, B. O., Osterberg, F., Almlof, M., Feierberg, I., Luzhkov, V. B. and Aqvist, J. (2003) Free energy calculations and ligand binding. Adv. Protein Chem. 66, 123–158.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Garrett, R. and Grisham, C. M. (1995) Biochemistry, Saunders College Pub, Fort Worth, TX.

    Google Scholar 

  48. 48.

    Ala, P. J., Huston, E. E., Klabe, R. M., et al. (1997) Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors. Biochemistry 36, 1573–1580.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Deeks, S. G., Smith, M., Holodniy, M. and Kahn, J. O. (1997) HIV-1 protease inhibitors-a review for clinicians. J. Am. Med. Assoc. 277, 145–153.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo R. Batista.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Batista, P.R., Wilter, A., Durham, E.H.A.B. et al. Molecular dynamics simulations applied to the study of subtypes of HIV-1 protease common to Brazil, Africa, and Asia. Cell Biochem Biophys 44, 395–404 (2006). https://doi.org/10.1385/CBB:44:3:395

Download citation

Index Entries

  • Molecular Dynamics
  • Gromacs
  • HIV-1 protease
  • ritonavir
  • subtypes
  • non-B
  • modelling
  • free energy
  • LIE