Skip to main content
Log in

Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Extracellular acidification and reduction of extracellular K+ are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K+]o at pH 7.4, it is very sensitive to [K+]o at pH 6.4, and in the mutant, H463G, the removal of K+ o virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K+ o in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na+ permeation through inactivated channels. Although the H463G currents were abolished in zero [K+]o, robust Na+ tail currents through inactivated channels were observed. The appearnnce of H463G Na+ currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K+ was replaced by NMG+ and the inward Na+ current was recorded, addition of 1 mM K+ prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K+]o inhibit Kv1.5 channels through a common mechananism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisner, D. A., Nichols, C. G., O'Neill, S. C., Smith, G. L., and Valdeolmillos, M. (1989) The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J. Physiol. (Camb.) 411, 393–418.

    CAS  Google Scholar 

  2. Orchard, C. H. and Kentish, J. C. (1990) Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. Cell Physiol. 258, C967-C981.

    CAS  Google Scholar 

  3. Yan, G-X. and Kléber, A. G. (1992) Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ. Res. 71, 460–470.

    PubMed  CAS  Google Scholar 

  4. Steidl, J. V. and Yool, A. J. (1999) Diferential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor. Molec. Pharmacol. 55, 812–820.

    CAS  Google Scholar 

  5. Kehl, S. J., Eduljee, C., Kwan, D. C. H., Zhang, S., and Fedida, D. (2002) Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn2+. J. Physiol. (Lond.) 541, 9–24.

    Article  CAS  Google Scholar 

  6. Jäger, H. and Grissmer, S. (2001) Regulation of a mammalian Shaker-related potassium channel, hKv1.5, by extracellular potassium and pH. FEBS Lett. 488, 45–50.

    Article  PubMed  Google Scholar 

  7. Perez-Cornejo, Stampe, P., and Begenisich, T. (1998) Proton probing of the charybdotoxin binding site of Shaker K+ channels. J. Gen. Physiol. 111, 441–450.

    Article  PubMed  CAS  Google Scholar 

  8. Starkus, J. G., Varga, Z., Schonherr, R., and Heinemann, S. H. (2003) Mechanisms of the inhiition of Shaker potassium channels by protons. Pflugers Arch. 447, 44–54.

    Article  PubMed  CAS  Google Scholar 

  9. Claydon, T. W., Boyett, M. R., Sivaprasadarao, A., Ishii, K., Owen, J. M., O'Beirne, H. A., Leach, R., Komukai, K., and Orchard, C. H. (2000) Inhibition of the K+ channel Kv1.4 by acidosis: protonation of an extracellular histidine slows the recovery from N-type inactivation. J. Physiol. (Camb.) 526, 253–264.

    Article  CAS  Google Scholar 

  10. Ishii, K., Nunoki, K., Yamagishi, T., Okada, H., and Taira, N. (2001) Differential sensitivity of Kv1.4, Kv1.2, and their tandem channel to acidic pH: Involvement of a histidine residue in high sensitivity to acidic pH. J. Pharmacol. Exp. Ther. 296, 405–411.

    PubMed  CAS  Google Scholar 

  11. Pardo, L. A., Heinemann, S. H., Terlau, H., Ludewig, U., Lorra, C., Pongs, O., and Stühmer, W. (1992) Extracellular K+ specifically modulates a rat brain K+ channel. Proc. Natl. Acad. Sci. U S A 89, 2466–2470.

    Article  PubMed  CAS  Google Scholar 

  12. Jäger, H., Rauer, H., Nguyen, A. N.., Aivar, J., Chandy, K. G., and Grissmer, S. (1998) Regulation of mammalian Shaker-related K+ channels: evidence for non-conducting closed and non-conducting inactivated states. J. Physiol. (Camb.) 506, 291–301.

    Article  Google Scholar 

  13. Lopez-Barneo, J., Hoshi, T., Heinemann, S. H., and Aldrich, R. W. (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Recept. Channels 1, 61–71.

    PubMed  CAS  Google Scholar 

  14. Starkus, J. G., Kuschel, L., Rayner, M. D., and Heinemann, S. H. (1997) Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110, 539–550.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, Z. and Fedida, D. (2001) Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel. Biophys. J. 81, 2614–2627.

    PubMed  CAS  Google Scholar 

  16. Wang, Z. R., Hesketh, J. C., and Fedida, D. (2000) A high-Na+ conduction state during recovery from inactivation in the K+ channel Kv1.5. Biophys. J. 79, 2416–2433.

    PubMed  CAS  Google Scholar 

  17. Zhang, S., Kehl, S. J., and Fedida, D. (2003) Modulation of human ether-a-go-go-related K+ (hERG) channel inactivation by Cs+ and K+. J. Physiol. (Camb.) 548, 691–702.

    Article  CAS  Google Scholar 

  18. Zhang, S., Kurata, H. T., Kehl, S. J., and Fedida, D. (2003) Rapid induction of P/C-type inactivation is the mechanism for acid-induced K+ current inhibition. J. Gen. Physiol. 121, 215–225.

    Article  PubMed  CAS  Google Scholar 

  19. Chen, F. S. P., Steele, D., and Fedida, D. (1997) Allosteric effects of permeating cations on gating currents during K+ channel deactivation. J. Gen. Physiol. 110, 87–100.

    Article  PubMed  Google Scholar 

  20. Yang, Y. S., Yan, Y. Y., and Sigworth, F. J. (1997) How does the W434F mutation block current in Shaker potassium channels. J. Gen. Physiol. 109, 779–789.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, S. T., Kehl, S. J., and Fedida, D. (2001) Modulation of Kv1.5 potassium channel gating by extracellular zinc. Biophys. J., 81, 125–136.

    Article  PubMed  CAS  Google Scholar 

  22. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A. L., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selective. Science 280, 69–77.

    Article  PubMed  CAS  Google Scholar 

  23. Fedida, D., Wible, B., Wang, Z., Fermini, B., Faust, F., Nattel, S., and Brown, A. M. (1993) Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ. Res. 73, 210–216.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fedida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Eduljee, C., Kwan, D.C.H. et al. Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH. Cell Biochem Biophys 43, 221–230 (2005). https://doi.org/10.1385/CBB:43:2:221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:2:221

Index Entries

Navigation