Skip to main content
Log in

Protein kinase C activity and isoform expression during early postnatal development of rat myocardium

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Total protein kinase C (PKC) activity, its isoform expression, and concentration and fatty acid (FA) composition of diacylglycerol (DAG) were determined in the left ventricular myocardium of the rat during early postnatal development (d 2, 3, 5, 7, and 10). PKC activity measured by the incorporation of 32P into histone IIIS decreased between d 2 and 10 in the homogenate as well as in cytosolic, membrane (100,000g), and nuclear-cytoskeletal-myofilament fractions (1000g). Likewise, the expression of PKC isoforms (α, δ, and ε) determined by immunoblotting generally declined during the period analyzed, although with a variable pattern. In the membrane and nuclear cytoskeletal myofilament fractions, PKCδ and PKCε expression decreased markedly by d 3, returning to or close to the d 2 level immediately on d 5. PKCα expression in the membrane fraction remained almost unchanged by d 7, declining thereafter. PKCδ and PKCε were associated predominantly with particulate fractions, whereas PKCα was more abundant in the cytosolic fraction. DAG concentration exhibited a significant decline by d 5, consistent with the decrease in maximal PKC activity. The unsaturation index of FA in DAG tended to decrease on d 3 owing to the lowered proportion of all polyunsaturated FA of n−6 and n−3 series. These results demonstrate that the developmental decrease in PKC activity and expression in the rat myocardium is not linear and that subcellular localization of the enzyme exhibits isoform-specific day-by-day changes during the early postnatal period. These changes are compatible with the view that PKC signaling may be involved in the control of a rapid switch of myocardial growth pattern during the first week of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305–312.

    Article  PubMed  CAS  Google Scholar 

  2. Puceat, M. and Vassort, G. (1996) Signalling by protein kinase C isoforms in the heart. Mol. Cell. Biochem. 157, 65–72.

    Article  PubMed  CAS  Google Scholar 

  3. Malhotra, A., Kang, B. P., Opawumi, D., Belizaire, W., and Meggs, L. G. (2001) Molecular biology of protein kinase C signaling in cardiac myocytes. Mol. Cell. Biochem. 225, 97–107.

    Article  PubMed  CAS  Google Scholar 

  4. Sabri, A. and Steinberg, S. F. (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol. Cell. Biochem. 251, 97–101.

    Article  PubMed  CAS  Google Scholar 

  5. Nishizuka, Y., (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  6. Newton, A. C. (1995) Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270, 28,495–28,498.

    Article  CAS  Google Scholar 

  7. Ha, K. S. and Exton, J. H. (1993) Differential translocation of protein kinase C isozymes by thrombin and platelet-derived growth factor: a possible function for phosphatidylcholinederived diacylglycerol. J. Biol. Chem. 268, 10,534–10,539.

    CAS  Google Scholar 

  8. Khan, W. A., Blobe, G. C., and Hannun, Y. A. (1995) Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cell. Signal. 7, 171–184.

    Article  PubMed  CAS  Google Scholar 

  9. Nishizuka, Y., (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9, 484–496.

    PubMed  CAS  Google Scholar 

  10. Murray, N. R. and Fields, A. P. (1998) Phosphatidylglycerol is a physiologic activator of nuclear protein kinase C. J. Biol. Chem. 273, 11,514–11,520.

    CAS  Google Scholar 

  11. Lee, J. Y., Hannun, Y. A., and Obeid, L. M. (1996) Ceramide inactivates cellular protein kinase C alpha. J. Biol. Chem. 271, 13,169–13,174.

    CAS  Google Scholar 

  12. Dhalla, N. S., Xu, Y. J., Sheu, S. S., Tappia, P. S., and Panagia, V. (1997) Phosphatidic acid: a potential signal transducer for cardiac hypertrophy. J. Mol. Cell. Cardiol. 29, 2865–2871.

    Article  PubMed  CAS  Google Scholar 

  13. Khan, W. A., Blobe, G. C., and Hannun, Y. A. (1992) Activation of protein kinase C by oleic acid. Determination and analysis of inhibition by detergent micelles and physiologic membranes: requirement for free oleate. J. Biol. Chem. 267, 3605–3612.

    PubMed  CAS  Google Scholar 

  14. Parekh, D. B., Ziegler, W., and Parker, P. J. (2000) Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496–503.

    Article  PubMed  CAS  Google Scholar 

  15. Newton, A. C. (1996) Trotein kinase C: ports of anchor in the cell. Curr. Biol. 6, 806–809.

    Article  PubMed  CAS  Google Scholar 

  16. Disatnik, M. H., Buraggi, G., and Mochly-Rosen, D. (1994) Localization of protein kinase C isozymes in cardiac myocytes. Exp. Cell Res. 210, 287–297.

    Article  PubMed  CAS  Google Scholar 

  17. Mochly-Rosen, D. and Gordon, A. S. (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J. 12, 35–42.

    PubMed  CAS  Google Scholar 

  18. Clerk, A., Bogoyevitch, M. A., Fuller, S. J., Lazou, A., Parker, P. J., and Sugden, P. H. (1995) Expression of protein kinase C isoforms during cardiac ventricular development. Am. J. Physiol. Heart Circ. Physiol. 269, H1087-H1097.

    CAS  Google Scholar 

  19. Ostadal, B., Ostadalova, I., and Dhalla, N. S. (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol. Rev. 79, 635–659.

    PubMed  CAS  Google Scholar 

  20. Li, F., Wang, X., Capasso, J. M. and Gerdes, A. M. (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28, 1737–1746.

    Article  PubMed  CAS  Google Scholar 

  21. Gu, X. and Bishop, S. P. (1994) Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ. Res. 75, 926–931.

    PubMed  CAS  Google Scholar 

  22. Peterson, G. L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356.

    Article  PubMed  CAS  Google Scholar 

  23. Ogita, K., Miyamoto, S., Yamaguchi, K., et al. (1992) Isolation and characterization of deltasubspecies of protein kinase C from rat brain. Proc. Natl. Acad. Sci. USA 89, 1592–1596.

    Article  PubMed  CAS  Google Scholar 

  24. Folch, J., Lees, M., and Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  25. McGill, C. J. and Brooks, G. (1997) Expression and regulation of 80K/MARCKS, a major substrate of protein kinase C, in the developing rat heart. Cardiovasc. Res. 34, 368–376.

    Article  PubMed  CAS  Google Scholar 

  26. Herget, T., Oehrlein, S. A., Pappin, D. J., Rozengurt, E., and Parker, P. J. (1995) The myristoylated alanine-rich C-kinase substrate (MARCKS) is sequentially phosphorylated by conventional, novel and atypical isotypes of protein kinase C. Eur. J. Biochem. 233, 448–457.

    Article  PubMed  CAS  Google Scholar 

  27. Rybin, V. O. and Steinberg, S. F. (1994) Protein kinase C isoform expression and regulation in the developing rat heart. Circ. Res. 74, 299–309.

    PubMed  CAS  Google Scholar 

  28. Schreiber, K. L., Paquet, L., Allen, B. G., and Rindt, H. (2001) Protein kinase C isoform expression and activity in the mouse heart. Am. J. Physiol. Heart Circ. Physiol. 281, H2062-H2071.

    PubMed  CAS  Google Scholar 

  29. Hunt, R. A., Ciuffo, G. M., Saavedra, J. M., and Tucker, D. C. (1995) Quantification and localisation of angiotensin II receptors and angiotensin converting enzyme in the developing rat heart. Cardiovasc. Res. 29, 834–840.

    Article  PubMed  CAS  Google Scholar 

  30. Artman, M. (1992) Developmental changes in myocardial contractile responses to inotropic agents. Cardiovasc. Res. 26, 3–13.

    Article  PubMed  CAS  Google Scholar 

  31. Vigouroux, E. (1976) Dynamic study of postnatal thyroid function in the rat. Acta Endocrinol. (Copenh.) 83, 752–762.

    CAS  Google Scholar 

  32. Rybin, V. and Steinberg, S. F. (1996) Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ. Res. 79, 388–398.

    PubMed  CAS  Google Scholar 

  33. Kazanietz, M. G., Areces, L. B., Bahador, A., et al. (1993) Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol. Pharmacol. 44, 298–307.

    PubMed  CAS  Google Scholar 

  34. Madani, S., Hichami, A., Legrand, A., Belleville, J., and Khan, N. A. (2001) Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C. FASEB J. 15, 2595–2601.

    Article  PubMed  CAS  Google Scholar 

  35. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y. (1980) Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 255, 2273–2276.

    PubMed  CAS  Google Scholar 

  36. Xu, F. Y., Fandrich, R. R., Nemer, M., Kardami, E., and Hatch, G. M. (1999) The subcellular distribution of protein kinase C-alpha,-epsilon, and-zeta isoforms during cardiac cell differentiation. Arch. Biochem. Biophys. 367, 17–25.

    Article  PubMed  CAS  Google Scholar 

  37. Lamers, J. M., Dekkers, D. H., Mesaeli, N., Panagia, V., and van Heugten, H. A. (1993) Myocardial phosphoinositides do not share the same fatty acid profile. Biochem. Biophys. Res. Commun. 191, 487–494.

    Article  PubMed  CAS  Google Scholar 

  38. Ostadalova, I., Kolar, F., Ostadal, B., Rohlicek, V., Rohlicek, J., and Prochazka, J. (1993) Early postnatal development of contractile performance and responsiveness to Ca2+, verapamil and ryanodine in the isolated rat heart. J. Mol. Cell. Cardiol. 25, 733–740.

    Article  PubMed  CAS  Google Scholar 

  39. Mochly-Rosen, D., Wu, G., Hahn, H., et al. (2000) Cardiotrophic effects of protein kinase C ε: analysis by in vivo modulation of PKCε translocation. Circ. Res. 86, 1173–1179.

    PubMed  CAS  Google Scholar 

  40. Chen, L., Hahn, H., Wu, G., et al. (2001) Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. PNAS 98, 11,114–11,119.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Novak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamplova, B., Novakova, O., Tvrzicka, E. et al. Protein kinase C activity and isoform expression during early postnatal development of rat myocardium. Cell Biochem Biophys 43, 105–117 (2005). https://doi.org/10.1385/CBB:43:1:105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:1:105

Index Entries

Navigation