Skip to main content
Log in

Increased calcium influx mediates increased cardiac stiffness in hyperthyroid rats

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cardiac remodeling (hypertrophy and fibrosis) and an increased left ventricular diastolic stiffness characterize models of hypertension such as the SHR and DOCA-salt hypertensive rats. By contrast, hyperthyroidism induces hypertrophy and hypertension, yet collagen expression and deposition is unchanged or decreased, whereas diastolic stiffness is increased. We determined the possible role of increased calcium influx in the development of increased diastolic stiffness in hyperthyroidism by administering verapamil (15 mg/[kg·d] orally) to rats given triiodothyronine (T3) (0.5 mg/[kg·d] subcutaneously for 14 d). Administration of T3 significantly increased body temperature (control: 36.7±0.2°C; T3:39.6±0.2°C), left ventricular wet weight (control: 2.09±0.02 mg/kg; T3 3.07±0.07 mg/kg), systolic blood pressure (control: 128±5 mmHg; T3: 156±4 mmHg), and left ventricular diastolic stiffness (control: 20.6±2.0; T3: 28.8±1.4). Collagen content of the left ventricle was unchanged. Contractile response to noradrenaline in thoracic aortic rings was reduced. Relaxation in response to acetylcholine (ACh) was also reduced in T3-treated rats, whereas sodium nitroprusside response was unchanged. Verapamil treatment of hyperthyroid rats completely prevented the increased diastolic stiffness and systolic blood pressure while attenuating the increased body temperature and left ventricular weight; collagen content remained unchanged. ACh response in thoracic aortic rings was restored by verapamil. Thus, in hyperthyroid rats, an increased calcium influx is a potential mediator of the increased diastolic stiffness independent of changes in collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seppet, E. K., Kadaya, L. Y., Hata, T., et al. (1991) Thyroid control over membrane processes in rat heart. Am. J. Physiol. 26(Suppl.), 4, 66–71.

    Google Scholar 

  2. Kimura, Y., Otsu, K., Nishida, K., Kuzuya, T., and Tada, M. (1994) Thyroid hormone enhances Ca2+ pumping activity of the cardiac sarcoplasmic reticulum by increasing Ca2+ ATPase and decreasing phospholamban expression. J. Mol. Cell. Cardiol. 26, 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  3. Jiang, M., Xu, A., Tokmakejian, S., and Narayanan, N. (2000) Thyroid hormone-induced overexpression of functional ryanodine receptors in the rabbit heart. Am. J. Physiol. 278, H1429-H1438.

    CAS  Google Scholar 

  4. Gotzsche, L. B. (1994) L-triiodothyronine acutely increases Ca2+ uptake in the isolated, perfused rat heart: changes in L-type Ca2+ channels and beta-receptors during short- and long-term hyper- and hypothyroidism. Eur. J. Endocrinol. 130, 171–179.

    Article  PubMed  CAS  Google Scholar 

  5. Ramires, F. J. A., Sun, Y., and Weber, K. T. (1998) Myocardial fibrosis associated with aldosterone or angiotensin II administration: attenuation by calcium channel blockade. J. Mol. Cell. Cardiol. 30, 475–483.

    Article  PubMed  CAS  Google Scholar 

  6. Sandmann, S., Claas, R., Cleutjens, J. P., Daemen, M. J., and Unger, T. (2001) Calcium channel blockade limits cardiac remodelling and improves cardiac function in myocardial infarction-induced heart failure in rats. J. Cardiovasc. Pharmacol. 37, 64–77.

    Article  PubMed  CAS  Google Scholar 

  7. Weber, K. T., Sun, Y., Tyagi, S. C., and Cleutjens, J. P. (1994) Collagen network of the myocardium: function, structural remodelling and regulatory mechanisms. J. Mol. Cell. Cardiol. 26, 279–292.

    Article  PubMed  CAS  Google Scholar 

  8. Norton, G. R., Tsotetsi, J., Trifunovic, B., Hartford, C., Candy, G. P., and Woodiwiss, A. J. (1997) Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 96, 1991–1998.

    PubMed  CAS  Google Scholar 

  9. Yao, J. and Eghbali, M. (1992) Decreased collagen mRNA and regression of cardiac fibrosis in the ventricular myocardium of the tight skin mouse following thyroid hormone treatment. Cardiovasc. Res. 26, 603–607.

    PubMed  CAS  Google Scholar 

  10. Yao, J. and Eghbali, M. (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ. Res. 71, 831–839.

    PubMed  CAS  Google Scholar 

  11. Brown, L., Duce, B., Miric, G., and Sernia, C. (1999) Reversal of cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats by inhibition of the renin-angiotensin system. J. Am. Soc. Nephrol. 10, S143-S148.

    PubMed  CAS  Google Scholar 

  12. Brown, L., Cragoe, E. J., Jr., Abel, K. C., Manley, S. W., and Bourke, J. R. (1991) Amiloride analogues induce responses in isolated rat cardiovascular tissues by inhibition of Na+/Ca2+ exchange. Naunyn-Schmiedeberg's Arch. Pharmacol. 344, 220–224.

    Article  CAS  Google Scholar 

  13. Vargas, F., Fernandez-Rivas, A., Garcia Estan, J., and Garcia del Rio, C. (1995) Endothelium-dependent and endothelium-independent vasodilation in hyperthyroid and hypothyroid rats. Pharmacology. 51, 308–314.

    PubMed  CAS  Google Scholar 

  14. Marchant, C., Brown, L., and Sernia, C. (1993) Renin-angiotensin system in thyroid dysfunction in rats. J. Cardiovasc. Pharmacol. 22, 449–455.

    Article  PubMed  CAS  Google Scholar 

  15. Gay, R. G., Raya, T. E., Lancaster, L. D., Lee, R. W., Morkin, E., and Goldman, S. (1988) Effects of thyroid state on venous compliance and left ventricular performance in rats. Am. J. Physiol. 254, 81–88.

    Google Scholar 

  16. Stuyvers, B. D., Miura, M., and ter Keurs, H. E. (1997) Dynamics of viscoelastic properties of rat cardiac sarcomeres during the diastolic interval: involvement of Ca2+. J. Physiol., 502, 661–677.

    Article  PubMed  CAS  Google Scholar 

  17. Stuyvers, B. D., Miura, M., and ter Keurs, H. E. (2000) Ca2+-dependence of passive properties of cardiac sarcomeres. Adv. Exp. Med. Biol. 481, 353–366.

    PubMed  CAS  Google Scholar 

  18. Mirkovic, S., Seymour, A. M., Fenning, A., et al. (2002) Attenuation of cardiac fibrosis by pirfenidone and amiloride in DOCA-salt hypertensive rats. Br. J. Pharmacol. 135, 961–968.

    Article  PubMed  CAS  Google Scholar 

  19. Miric, G., Dallemagne, C., Endre, Z., Margolin, S., Taylor, S. M. and Brown, L. (2001) Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br. J. Pharmacol. 133, 687–694.

    Article  PubMed  CAS  Google Scholar 

  20. Nishikawa, N., Masuyama, T., Yamamoto, K., et al. (2001) Long-term administration of amlodopine prevents decompensation to diastolic heart failure in hypertensive rats. J. Am. Coll. Cardiol. 38, 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  21. Swynghedauw, B., Delcayre, C., Cheav, S. L., and Callens-el Amrani, F. (1992) Biological basis of diastolic dysfunction of the hypertensive heart. Eur. Heart J. 13(Suppl. D), 2–8.

    PubMed  CAS  Google Scholar 

  22. Mercadier, J. J., Lompre, A. M., Duc, P., et al. (1990) Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J. Clin. Invest. 85, 305–309.

    Article  PubMed  CAS  Google Scholar 

  23. de la Bastie, D., Levitsky, D., Rappaport, L., et al. (1990) Function of the sarcoplasmic reticulum and expression of its Ca2+-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ. Res. 66, 554–564.

    PubMed  Google Scholar 

  24. Brown, L., Amos, G., and Miller, B. (1994) Disease-induced changes in α-adrenoceptor-mediated cardiac and vascular responses in rats. Clin. Exp. Pharmacol. Physiol. 21, 721–728.

    Article  PubMed  CAS  Google Scholar 

  25. Ishikawa, T., Chijiwa, T., Hagiwara, M., Mamiya, S., and Hidaka, H. (1989) Thyroid hormones directly interact with vascular smooth muscle strips. Mol. Pharmacol. 35, 760–765.

    PubMed  CAS  Google Scholar 

  26. Nelson, M. T., Standen, N. B., Brayden, J. E., and Worley, J. F. 3rd (1988) Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336, 382–385.

    Article  PubMed  CAS  Google Scholar 

  27. Nilsson, H., Videbæk, L. M., Toma, C., and Mulvany, M. J. (1998) Role of intracellular calcium for noradrenaline-induced depolarization in rat mesenteric small arteries. J. Vasc. Res. 35, 36–44.

    Article  PubMed  CAS  Google Scholar 

  28. Ding, Y. and Vaziri, N. D. (2000) Nifedipine and diltiazem but not verapamil up-regulate endothelial nitric-oxide synthase expression. JPET 292, 606–609.

    CAS  Google Scholar 

  29. Koyama, T., Kimura, C., Park, S. J., Oike, M., and Ito, Y. (2002) Functional implications of Ca2+ mobilizing properties for nitric oxide production in aortic endothelium. Life Sci. 72, 511–520.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levick, S., Fenning, A. & Brown, L. Increased calcium influx mediates increased cardiac stiffness in hyperthyroid rats. Cell Biochem Biophys 43, 53–60 (2005). https://doi.org/10.1385/CBB:43:1:053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:1:053

Index Entries

Navigation