Abstract
Redox stress activates the endothelium and upregulates matrix metalloproteinases (MMPs), which degrade the matrix and lead to blood-endothelial barrier leakage. Interestingly, elevated levels of plasma homocysteine (Hcy) are associated with vascular dementia, seizure, stroke, and Alzheimer disease. Hcy competes with the γ-aminobutyric acid (GABA)-A/B receptors and behave like an excitatory neurotransmitter. GABA stimulates the inhibitory neurotransmitter GABA-A/B receptor and decreases arterial blood pressure. However, the neural mechanisms of microvascular remodeling in hyperhomocysteinemia are unclear. This review addresses the idea that Hcy induces microvascular permeability by attenuating the GABA-A/B receptors and increasing redox stress, which activates a disintegrin and metalloproteinase that suppresses tissue inhibitors of metalloproteinase. This process causes disruption of the matrix in the blood-brain barrier. Understanding the mechanism of Hcy-mediated changes in permeability of the blood-brain barrier and extracellular matrix that can alter the neuronal environment in cerebral-vascular dementia is of great importance in developing treatments for this disease.
Similar content being viewed by others
References
Yi, P., Melnyk, S., Pogribna, M., Pogribny, I. P., Hine, R. J., and James, S. J. (2000) Increase in plasma homocysteine associated with parallel increase in plasma s-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 275, 29,318–29,323.
Mujumdar, V. S., Aru, G. M., and Tyag, S. C. (2001) Induction of oxidative stress by homocyst(e)ine impairs endothelial function. J. Cell. Biochem. 82(3) 491–500.
Finkelstein, J. D. (1998) The metabolism of Hcy: pathways and regulation. Eur. J. Pediatr. 157(S-2), S40-S44.
Finkelstein, J. D. (1990) Methionine metabolism in mammals. J. Nutr. Biochem. 1, 228–237.
Sood, H. S., Hunt, M. J., and Tyagi, S. C. (2003) Peroxisome proliferator ameliorates endothelial dysfunction in a murine model of hyperhomocysteinemia. Am. J. Physiol. 284, L333-L341.
Lentz, S. R., Erger, R. A., Dayal, S., et al. (2000) Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine betasynthase-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 279(3), H970-H975.
Weiss, N., Zhang, Y. Y., Heydrick, S., Bierl, C., and Loscalzo, J. (2001) Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc. Natl. Acad. Sci. USA 98(22), 12,503–12,508.
Baumbach, G. L., Sigmund, C. D., Bottiglieri, T., and Lentz, S. R. (2002) Structure of cerebral arterioles in cystathionine beta-synthase-deficient mice. Circ. Res. 91(10), 931–937.
Djonov, V., Baum, O., and Burri, P. H. (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 314(1), 107–117.
Boger, R. H., Bode-Boger, S. M., Sydow, K., Heistad, D. D., and Lentz, S. R. (2000) Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 20(6), 1557–1564.
Levkau, B., Kenagy, R. D., Karsan, A., et al. (2002) Activation of metalloproteinases and their association with integrins: apoptotic pathway in human endothelial cells. Cell Death Differ. 9, 1360–1367.
Shastry, S. and Tyagi, S. C. (2004) Homocysteine induces metalloproteinase and shedding of beta-1 integrin in microvessel endothelial cells. J. Cell. Biochem., 93, 207–213.
Frisch, S. M. and Francis, H. (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626.
Rosenberg, G. A. (2002) Matrix metalloproteinases in neuroinflammation. Glia 39, 279–291.
Loechel, F., Gilpin, B. J., Engvall, E., Albrechtsen, R., and Wewer, U. M. (1998) Human ADAM 12 (meltrin alpha) is an active metalloprotease. J. Biol. Chem. 273(27), 16,993–16,997.
Tyagi, S. C., Kumar, S. G., Alla, S. R., Reddy, H. K., Voelker, D. J., and Janicki, J. S. (1996) Extracellular matrix regulation of metalloproteinase and antiproteinase in human heart fibroblast cells. J. Cell. Physiol. 167(1), 137–147.
Visse, R. and Nagase, H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92(8), 827–839.
Stamenkovic, I. (2003) Extracellular matrix remodeling: the role of matrix metalloproteinases. J. Pathol. 200, 448–464.
Hodgkin, D. D., Gilbert, R. D., Roos, P. J., Sandberg, L. B., and Boucek, R. J. (1992) Dietary lipid modulation of connective tissue matrix in rat abdominal aorta. Am. J. Physiol. 262, R389-R394.
Martyn, C. N. and Greenwald, S. E. (1997) Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 350, 953–955.
Bunton, T. E., Biery, N. J., Myers, L., Gayraud, B., Ramirez, F., and Dietz, H. C. (2001) Phenotypic alteration of vascular smooth muscle cells procedes elastinolysis in a mouse model of marfan syndrome. Circ. Res. 88, 37–43.
McMillan, W. D., Tamarina, N. A., Cipolone, M., Johnson, D. A., Parker, M. A., and Pearce, W. H. (1997) Size matters: relationship between MMP-9 expression and aortic diameter. Circulation 96, 2228–2232.
Tyagi, S. C. (1999) Homocyst(e)ine and heart disease: pathophysiology of extracellular matrix. Clin. Exp. Hypertens. 21, 181–198.
Tyagi, S. C., Meyer, L., Schmaltz, R. A., Reddy, H. K., and Voelker, D. J. (1995) Proteinases and restenosis: matrix metalloproteinase and their inhibitor and activator, in Cardiovascular Disease II: Cellular and Molecular Mechanisms, Prevention, Treatment, (Gallo, L. L., ed.), Plenum, New York pp. 19–31.
Hunt, M. J., Aru, G. M., Hayden, M. R., Moore, C. K., Hoit, B. D. and Tyagi, S. C. (2002) Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. Am. J. Physiol. 283, L239-L245.
Eassiouny, H. S., Song, R. H., Hong, X. F., Singh, A., Kocharyan, H., and Glagov, S. (1998) Flow regulation of 72-kD collagenase IV (MMP-2) and experimental arterial injury. Circulation 98, 157–163.
Griendling, K. K., Sorescu, D., and Ushio-Fukai, M. (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res. 86(5), 494–501.
Wolin, M. S. (2000) Interaction of oxidants with vascular signaling systems. Arterioscl. Thromb. Vasc. Biol. 20, 1430–1442.
Tyagi, S. C., Meyer, L., Schmaltz, R. A., Reddy, H. K., and Voelker, D. J. (1995) Proteinases and restenosis in human coronary artery: extracellular matrix production exceeds the expression of proteolytic activity. Atherosclerosis 116, 43–57.
Rucklidge, G. J., Milne, G., McGaw, B. A., Milne, E., and Robins, S. P. (1992) Turnover rates of different collagen types measured by isotope ratio mass spectrometery. Biochim. Biophys. Acta 11, 1156–1157.
Tyagi, S. C. and Hayden, M. R. (2003) Role of nitric oxide in matrix remodeling in diabetes and heart failure. Heart Failure Rev. 8, 23–28.
Alvarez-Sabin, J., Delgado, P., Abilleira, S., et al. (2004) Temporal profile of MMPs and TIMPs after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 35, 1316–1322.
Leppert, D., Leib, S. L., Grygar, C., Miller, K. M., Schaad, U. B., and Hollander, G. A. (2000) Matrix metalloproteinase MMP-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood brain barrier and neurological sequelae. Clin. Infect. Dis. 31, 80–84.
Mataga, N., Nagai, N., and Hensch, T. K. (2002) Permissive proteolytic activity for visual cortical plasticity. Proc. Natl. Acad. Sci. USA 99, 7717–7721.
Frey, U., Muller, M., and Kuhl, D. (1996) A different form of long lasting potentiation revealed in tPA mutant mice. J. Neurosci. 16, 2057–2063.
Lee, W. S., Limmorth, V., Ayata, C., et al. (1995) Peripheral GABAA-receptor-mediated effects on sodium valproaon dural plasma protein extravasation to substance P and tigeminal stimulation. J. Pharmacol. 116, 1661–1667.
Limmroth, V., Lee, W. S., Moskowitz, M. A. (1996) GABAA-receptor mediatred effects of progesterone, its ring-a reduced metaboliies and synthetic neuroactive steroids on neurogenic oedema in the rat meninges. Br. J. Pharmacol. 117, 99–104.
Fruscella, P., Sottocorno, M., DiBraccio, M. et al. (2001) 1,5 Benzodiazepine tricyclic derivatives exerting anti-inflammatory effects in mice by inhibiting IL6 and PGE2 production. Pharmacol. Res. 43, 445–452.
Lazzanini, R., Malucelli, B. E., Palermo-Neto, J. (2001) Reduction of acute inflammation in rats by diazepam: role of peripheral benzodiazepine receptors and corticosterone. Immunopharmacol. Immunotoxicol. 23, 253–265.
Andressen, C., Arnhold, S., Puschmann, M. et al. (1998) Beta 1 integrin deficiency impairs migration and differentiation of mouse embryonic stem cell derived neurons. Neurosci. Lett. 251(3): 165–168.
Zhang, J.W., Deb, S., and Gottschall, P. E. (1998) Regional and differential expression of gelatinases in rat brain after systemic kainic acid or bicuculline administration. Eur. J. Neurosci. 10, 3358–3368.
Shastry, S. and Tyagi, S. C. (2004) GABA-A receptor agonist ameliorates Hcy-mediated β1 shedding in microvessel endothelial cells. Am. J. Physiol., submitted.
Joseph, J. (2002) The neurotransmitter GABA is an inhibitory regulator of the migration of SW 480 colon carcinoma cells. Cancer Res. 62(22), 6467–6469.
Shastry, S. and Tyagi, S. C. (2004) GABA receptor alpha agonist ameliorates Hcy-mediated constrictive microvascular remodeling. FASEB J. 18, A258.
Mujumdar, V. S., Hayden, M. R., and Tyagi, S. C. (2000) Homocysteine induces calcium second messenger in vascular smooth muscle cells. J. Cell. Physiol. 183, 28–36.
Hunt, M. J. and Tyagi, S. C. (2002) Peroxisome proliferators compete and ameliorate homocysteine-mediated endocardial endothelial cells activation. Am. J. Physiol. 283, C1073-C1079.
Tyagi, S. C. (1998) Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. Am. J. Physiol. 274, C396-C405.
Majors, A., Ehrhart, L. A., and Pezacka, E. H. (1997) Homocysteine as a risk factor for vascular disease: enhanced collagen production and accumulation by SMC. Arterioscl. Thromb. Vasc. Biol. 17, 2074–2081.
Barnard, E. A., Skolnick, P., Olsen, R. W., et al. (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313.
Chebib, M., and Johnston, G. A. (1999) The ‘ABC’ of GABA receptors: a brief review. Clin. Exp. Pharmacol. Physiol. 26, 937–940.
Bowery, N. G., Bettler, B., Froestl, W., et al. (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid (B) receptors: structure and function. Pharmacol. Rev. 54, 247–264.
Meier, J., Akyeli, J., Kirischuk, S., and Grantyn, R. (2003) GABA(A) receptor activity and PKC control inhibitory synaptogenesis in CNS tissue slices. Mol. Cell. Neurosci. 23, 600–613.
Zhang, H. Y., McPherson, B. C., Liu, H., Maman, T. S., Rock, P., and Yao, Z. (2002) H(2)O(2) opens mitochondrial K-ATP channels and inhibits GABA receptors via PKC-epsilon in cardiomyocytes. Am. J. Physiol. 282, H1395-H1403.
Zhang, Y. and Liu, G. (1999) A novel method to determine the localization of high and low-affinity GABA transporters to the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. Brain Res. Protoc. 4, 288–294.
Folbergova, J. (1994) NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp. Neurol. 130, 344–350.
Griffiths, R., Williams, D. C., O'Neill, C., Dewhurst, I. C., Ekuwem, C. E., and Sinclair, C. D. (1983). Synergistic inhibition of (3H) muscimol binding to calf brain synaptic membranes in the presence of L-homocysteine and pyridoxal 5-phosphate: a possible mechanism for homocysteine-induced seizures. Eur. J. Biochem. 137, 467–478.
Seshadri, S. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med. 346, 476–483.
Sieklucka, M., Bortolotto, Z., Heim, C., Block, F., and Sontag, K. H. (1991) Decreased susceptibility to seizures induced by bicuculine after transient bilateral clamping of the carotid arteries in rats. J. Neural Transm. Gen. Sect. 83, 127–137.
Loscalzo, J. (2002) Homocysteine and dementias. N. Engl. J. Med. 346, 466–468.
Fridman, O. (1999) Hyperhomocysteinemia: atherothrombosis and neurotoxicity. Acta Physiol. Pharmacol. Ther. Latinoam. 49, 21–30.
Hackam, D. G., Peterson, J. C., and Spence, J. D. (2000) What level of plasma homocysteine should be treated? Am. J. Hypertens. 13, 105–110.
Schnyder, G. (2001) Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N. Engl. J. Med. 345, 1593–1600.
Malinow, M. R. and Levenson, J. (1995) Role of blood pressure, uric acid and hemorheological parameters on plasma homocysteine concentration. Atherosclerosis 114, 175–183.
Sutton-Tyrrell, K., Bostom, A., Selhub, J., and Ziegler-Johson, C. (1997) High Hcy levels are independently related to isolated systolic hypertension in older adults. Circulation 96, 1745–1749.
Unger, T., Becker, H., Dietz, R., Ganten, D., Lang, R. E., Rettig, R., Schomig, A., and Schwab, N. A. (1994) Antihypertensive effect of the GABA receptor agonist muscimol in spontaneously hypertensive rats: role of the sympathoadrenal axis. Circ. Res. 54, 30–37.
Kishi, T., Hirooka, Y., Sakai, K., Shigematsu, H., Shimokawa, H., and Takeshita, A. (2001) Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 38, 896–901.
Tyagi, S. C., Smiley, L. M., and Mujumdar, V. S. (1999) Homocysteine impairs endocardial endothelial function. Can. J. Physiol. Pharmacol. 77, 950–957.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tyagi, S.C., Lominadze, D. & Roberts, A.M. Homocysteine in microvascular endothelial cell barrier permeability. Cell Biochem Biophys 43, 37–44 (2005). https://doi.org/10.1385/CBB:43:1:037
Issue Date:
DOI: https://doi.org/10.1385/CBB:43:1:037