Skip to main content

Advertisement

Log in

Homocysteine in microvascular endothelial cell barrier permeability

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Redox stress activates the endothelium and upregulates matrix metalloproteinases (MMPs), which degrade the matrix and lead to blood-endothelial barrier leakage. Interestingly, elevated levels of plasma homocysteine (Hcy) are associated with vascular dementia, seizure, stroke, and Alzheimer disease. Hcy competes with the γ-aminobutyric acid (GABA)-A/B receptors and behave like an excitatory neurotransmitter. GABA stimulates the inhibitory neurotransmitter GABA-A/B receptor and decreases arterial blood pressure. However, the neural mechanisms of microvascular remodeling in hyperhomocysteinemia are unclear. This review addresses the idea that Hcy induces microvascular permeability by attenuating the GABA-A/B receptors and increasing redox stress, which activates a disintegrin and metalloproteinase that suppresses tissue inhibitors of metalloproteinase. This process causes disruption of the matrix in the blood-brain barrier. Understanding the mechanism of Hcy-mediated changes in permeability of the blood-brain barrier and extracellular matrix that can alter the neuronal environment in cerebral-vascular dementia is of great importance in developing treatments for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi, P., Melnyk, S., Pogribna, M., Pogribny, I. P., Hine, R. J., and James, S. J. (2000) Increase in plasma homocysteine associated with parallel increase in plasma s-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 275, 29,318–29,323.

    CAS  Google Scholar 

  2. Mujumdar, V. S., Aru, G. M., and Tyag, S. C. (2001) Induction of oxidative stress by homocyst(e)ine impairs endothelial function. J. Cell. Biochem. 82(3) 491–500.

    Article  PubMed  CAS  Google Scholar 

  3. Finkelstein, J. D. (1998) The metabolism of Hcy: pathways and regulation. Eur. J. Pediatr. 157(S-2), S40-S44.

    Article  PubMed  CAS  Google Scholar 

  4. Finkelstein, J. D. (1990) Methionine metabolism in mammals. J. Nutr. Biochem. 1, 228–237.

    Article  PubMed  CAS  Google Scholar 

  5. Sood, H. S., Hunt, M. J., and Tyagi, S. C. (2003) Peroxisome proliferator ameliorates endothelial dysfunction in a murine model of hyperhomocysteinemia. Am. J. Physiol. 284, L333-L341.

    CAS  Google Scholar 

  6. Lentz, S. R., Erger, R. A., Dayal, S., et al. (2000) Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine betasynthase-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 279(3), H970-H975.

    PubMed  CAS  Google Scholar 

  7. Weiss, N., Zhang, Y. Y., Heydrick, S., Bierl, C., and Loscalzo, J. (2001) Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc. Natl. Acad. Sci. USA 98(22), 12,503–12,508.

    Article  CAS  Google Scholar 

  8. Baumbach, G. L., Sigmund, C. D., Bottiglieri, T., and Lentz, S. R. (2002) Structure of cerebral arterioles in cystathionine beta-synthase-deficient mice. Circ. Res. 91(10), 931–937.

    Article  PubMed  CAS  Google Scholar 

  9. Djonov, V., Baum, O., and Burri, P. H. (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 314(1), 107–117.

    Article  PubMed  Google Scholar 

  10. Boger, R. H., Bode-Boger, S. M., Sydow, K., Heistad, D. D., and Lentz, S. R. (2000) Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 20(6), 1557–1564.

    PubMed  CAS  Google Scholar 

  11. Levkau, B., Kenagy, R. D., Karsan, A., et al. (2002) Activation of metalloproteinases and their association with integrins: apoptotic pathway in human endothelial cells. Cell Death Differ. 9, 1360–1367.

    Article  PubMed  CAS  Google Scholar 

  12. Shastry, S. and Tyagi, S. C. (2004) Homocysteine induces metalloproteinase and shedding of beta-1 integrin in microvessel endothelial cells. J. Cell. Biochem., 93, 207–213.

    Article  PubMed  CAS  Google Scholar 

  13. Frisch, S. M. and Francis, H. (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenberg, G. A. (2002) Matrix metalloproteinases in neuroinflammation. Glia 39, 279–291.

    Article  PubMed  Google Scholar 

  15. Loechel, F., Gilpin, B. J., Engvall, E., Albrechtsen, R., and Wewer, U. M. (1998) Human ADAM 12 (meltrin alpha) is an active metalloprotease. J. Biol. Chem. 273(27), 16,993–16,997.

    Article  CAS  Google Scholar 

  16. Tyagi, S. C., Kumar, S. G., Alla, S. R., Reddy, H. K., Voelker, D. J., and Janicki, J. S. (1996) Extracellular matrix regulation of metalloproteinase and antiproteinase in human heart fibroblast cells. J. Cell. Physiol. 167(1), 137–147.

    Article  PubMed  CAS  Google Scholar 

  17. Visse, R. and Nagase, H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92(8), 827–839.

    Article  PubMed  CAS  Google Scholar 

  18. Stamenkovic, I. (2003) Extracellular matrix remodeling: the role of matrix metalloproteinases. J. Pathol. 200, 448–464.

    Article  PubMed  CAS  Google Scholar 

  19. Hodgkin, D. D., Gilbert, R. D., Roos, P. J., Sandberg, L. B., and Boucek, R. J. (1992) Dietary lipid modulation of connective tissue matrix in rat abdominal aorta. Am. J. Physiol. 262, R389-R394.

    PubMed  CAS  Google Scholar 

  20. Martyn, C. N. and Greenwald, S. E. (1997) Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 350, 953–955.

    Article  PubMed  CAS  Google Scholar 

  21. Bunton, T. E., Biery, N. J., Myers, L., Gayraud, B., Ramirez, F., and Dietz, H. C. (2001) Phenotypic alteration of vascular smooth muscle cells procedes elastinolysis in a mouse model of marfan syndrome. Circ. Res. 88, 37–43.

    PubMed  CAS  Google Scholar 

  22. McMillan, W. D., Tamarina, N. A., Cipolone, M., Johnson, D. A., Parker, M. A., and Pearce, W. H. (1997) Size matters: relationship between MMP-9 expression and aortic diameter. Circulation 96, 2228–2232.

    PubMed  CAS  Google Scholar 

  23. Tyagi, S. C. (1999) Homocyst(e)ine and heart disease: pathophysiology of extracellular matrix. Clin. Exp. Hypertens. 21, 181–198.

    Article  PubMed  CAS  Google Scholar 

  24. Tyagi, S. C., Meyer, L., Schmaltz, R. A., Reddy, H. K., and Voelker, D. J. (1995) Proteinases and restenosis: matrix metalloproteinase and their inhibitor and activator, in Cardiovascular Disease II: Cellular and Molecular Mechanisms, Prevention, Treatment, (Gallo, L. L., ed.), Plenum, New York pp. 19–31.

    Google Scholar 

  25. Hunt, M. J., Aru, G. M., Hayden, M. R., Moore, C. K., Hoit, B. D. and Tyagi, S. C. (2002) Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. Am. J. Physiol. 283, L239-L245.

    CAS  Google Scholar 

  26. Eassiouny, H. S., Song, R. H., Hong, X. F., Singh, A., Kocharyan, H., and Glagov, S. (1998) Flow regulation of 72-kD collagenase IV (MMP-2) and experimental arterial injury. Circulation 98, 157–163.

    Google Scholar 

  27. Griendling, K. K., Sorescu, D., and Ushio-Fukai, M. (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res. 86(5), 494–501.

    PubMed  CAS  Google Scholar 

  28. Wolin, M. S. (2000) Interaction of oxidants with vascular signaling systems. Arterioscl. Thromb. Vasc. Biol. 20, 1430–1442.

    PubMed  CAS  Google Scholar 

  29. Tyagi, S. C., Meyer, L., Schmaltz, R. A., Reddy, H. K., and Voelker, D. J. (1995) Proteinases and restenosis in human coronary artery: extracellular matrix production exceeds the expression of proteolytic activity. Atherosclerosis 116, 43–57.

    Article  PubMed  CAS  Google Scholar 

  30. Rucklidge, G. J., Milne, G., McGaw, B. A., Milne, E., and Robins, S. P. (1992) Turnover rates of different collagen types measured by isotope ratio mass spectrometery. Biochim. Biophys. Acta 11, 1156–1157.

    Google Scholar 

  31. Tyagi, S. C. and Hayden, M. R. (2003) Role of nitric oxide in matrix remodeling in diabetes and heart failure. Heart Failure Rev. 8, 23–28.

    Article  CAS  Google Scholar 

  32. Alvarez-Sabin, J., Delgado, P., Abilleira, S., et al. (2004) Temporal profile of MMPs and TIMPs after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 35, 1316–1322.

    Article  PubMed  CAS  Google Scholar 

  33. Leppert, D., Leib, S. L., Grygar, C., Miller, K. M., Schaad, U. B., and Hollander, G. A. (2000) Matrix metalloproteinase MMP-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood brain barrier and neurological sequelae. Clin. Infect. Dis. 31, 80–84.

    Article  PubMed  CAS  Google Scholar 

  34. Mataga, N., Nagai, N., and Hensch, T. K. (2002) Permissive proteolytic activity for visual cortical plasticity. Proc. Natl. Acad. Sci. USA 99, 7717–7721.

    Article  PubMed  CAS  Google Scholar 

  35. Frey, U., Muller, M., and Kuhl, D. (1996) A different form of long lasting potentiation revealed in tPA mutant mice. J. Neurosci. 16, 2057–2063.

    PubMed  CAS  Google Scholar 

  36. Lee, W. S., Limmorth, V., Ayata, C., et al. (1995) Peripheral GABAA-receptor-mediated effects on sodium valproaon dural plasma protein extravasation to substance P and tigeminal stimulation. J. Pharmacol. 116, 1661–1667.

    CAS  Google Scholar 

  37. Limmroth, V., Lee, W. S., Moskowitz, M. A. (1996) GABAA-receptor mediatred effects of progesterone, its ring-a reduced metaboliies and synthetic neuroactive steroids on neurogenic oedema in the rat meninges. Br. J. Pharmacol. 117, 99–104.

    PubMed  CAS  Google Scholar 

  38. Fruscella, P., Sottocorno, M., DiBraccio, M. et al. (2001) 1,5 Benzodiazepine tricyclic derivatives exerting anti-inflammatory effects in mice by inhibiting IL6 and PGE2 production. Pharmacol. Res. 43, 445–452.

    Article  PubMed  CAS  Google Scholar 

  39. Lazzanini, R., Malucelli, B. E., Palermo-Neto, J. (2001) Reduction of acute inflammation in rats by diazepam: role of peripheral benzodiazepine receptors and corticosterone. Immunopharmacol. Immunotoxicol. 23, 253–265.

    Article  Google Scholar 

  40. Andressen, C., Arnhold, S., Puschmann, M. et al. (1998) Beta 1 integrin deficiency impairs migration and differentiation of mouse embryonic stem cell derived neurons. Neurosci. Lett. 251(3): 165–168.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang, J.W., Deb, S., and Gottschall, P. E. (1998) Regional and differential expression of gelatinases in rat brain after systemic kainic acid or bicuculline administration. Eur. J. Neurosci. 10, 3358–3368.

    Article  PubMed  CAS  Google Scholar 

  42. Shastry, S. and Tyagi, S. C. (2004) GABA-A receptor agonist ameliorates Hcy-mediated β1 shedding in microvessel endothelial cells. Am. J. Physiol., submitted.

  43. Joseph, J. (2002) The neurotransmitter GABA is an inhibitory regulator of the migration of SW 480 colon carcinoma cells. Cancer Res. 62(22), 6467–6469.

    PubMed  CAS  Google Scholar 

  44. Shastry, S. and Tyagi, S. C. (2004) GABA receptor alpha agonist ameliorates Hcy-mediated constrictive microvascular remodeling. FASEB J. 18, A258.

    Google Scholar 

  45. Mujumdar, V. S., Hayden, M. R., and Tyagi, S. C. (2000) Homocysteine induces calcium second messenger in vascular smooth muscle cells. J. Cell. Physiol. 183, 28–36.

    Article  PubMed  CAS  Google Scholar 

  46. Hunt, M. J. and Tyagi, S. C. (2002) Peroxisome proliferators compete and ameliorate homocysteine-mediated endocardial endothelial cells activation. Am. J. Physiol. 283, C1073-C1079.

    CAS  Google Scholar 

  47. Tyagi, S. C. (1998) Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. Am. J. Physiol. 274, C396-C405.

    PubMed  CAS  Google Scholar 

  48. Majors, A., Ehrhart, L. A., and Pezacka, E. H. (1997) Homocysteine as a risk factor for vascular disease: enhanced collagen production and accumulation by SMC. Arterioscl. Thromb. Vasc. Biol. 17, 2074–2081.

    PubMed  CAS  Google Scholar 

  49. Barnard, E. A., Skolnick, P., Olsen, R. W., et al. (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313.

    PubMed  CAS  Google Scholar 

  50. Chebib, M., and Johnston, G. A. (1999) The ‘ABC’ of GABA receptors: a brief review. Clin. Exp. Pharmacol. Physiol. 26, 937–940.

    Article  PubMed  CAS  Google Scholar 

  51. Bowery, N. G., Bettler, B., Froestl, W., et al. (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid (B) receptors: structure and function. Pharmacol. Rev. 54, 247–264.

    Article  PubMed  CAS  Google Scholar 

  52. Meier, J., Akyeli, J., Kirischuk, S., and Grantyn, R. (2003) GABA(A) receptor activity and PKC control inhibitory synaptogenesis in CNS tissue slices. Mol. Cell. Neurosci. 23, 600–613.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang, H. Y., McPherson, B. C., Liu, H., Maman, T. S., Rock, P., and Yao, Z. (2002) H(2)O(2) opens mitochondrial K-ATP channels and inhibits GABA receptors via PKC-epsilon in cardiomyocytes. Am. J. Physiol. 282, H1395-H1403.

    CAS  Google Scholar 

  54. Zhang, Y. and Liu, G. (1999) A novel method to determine the localization of high and low-affinity GABA transporters to the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. Brain Res. Protoc. 4, 288–294.

    Article  PubMed  CAS  Google Scholar 

  55. Folbergova, J. (1994) NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp. Neurol. 130, 344–350.

    Article  Google Scholar 

  56. Griffiths, R., Williams, D. C., O'Neill, C., Dewhurst, I. C., Ekuwem, C. E., and Sinclair, C. D. (1983). Synergistic inhibition of (3H) muscimol binding to calf brain synaptic membranes in the presence of L-homocysteine and pyridoxal 5-phosphate: a possible mechanism for homocysteine-induced seizures. Eur. J. Biochem. 137, 467–478.

    Article  PubMed  CAS  Google Scholar 

  57. Seshadri, S. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med. 346, 476–483.

    Article  PubMed  CAS  Google Scholar 

  58. Sieklucka, M., Bortolotto, Z., Heim, C., Block, F., and Sontag, K. H. (1991) Decreased susceptibility to seizures induced by bicuculine after transient bilateral clamping of the carotid arteries in rats. J. Neural Transm. Gen. Sect. 83, 127–137.

    Article  PubMed  CAS  Google Scholar 

  59. Loscalzo, J. (2002) Homocysteine and dementias. N. Engl. J. Med. 346, 466–468.

    Article  PubMed  Google Scholar 

  60. Fridman, O. (1999) Hyperhomocysteinemia: atherothrombosis and neurotoxicity. Acta Physiol. Pharmacol. Ther. Latinoam. 49, 21–30.

    PubMed  CAS  Google Scholar 

  61. Hackam, D. G., Peterson, J. C., and Spence, J. D. (2000) What level of plasma homocysteine should be treated? Am. J. Hypertens. 13, 105–110.

    Article  PubMed  CAS  Google Scholar 

  62. Schnyder, G. (2001) Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N. Engl. J. Med. 345, 1593–1600.

    Article  PubMed  CAS  Google Scholar 

  63. Malinow, M. R. and Levenson, J. (1995) Role of blood pressure, uric acid and hemorheological parameters on plasma homocysteine concentration. Atherosclerosis 114, 175–183.

    Article  PubMed  CAS  Google Scholar 

  64. Sutton-Tyrrell, K., Bostom, A., Selhub, J., and Ziegler-Johson, C. (1997) High Hcy levels are independently related to isolated systolic hypertension in older adults. Circulation 96, 1745–1749.

    PubMed  CAS  Google Scholar 

  65. Unger, T., Becker, H., Dietz, R., Ganten, D., Lang, R. E., Rettig, R., Schomig, A., and Schwab, N. A. (1994) Antihypertensive effect of the GABA receptor agonist muscimol in spontaneously hypertensive rats: role of the sympathoadrenal axis. Circ. Res. 54, 30–37.

    Google Scholar 

  66. Kishi, T., Hirooka, Y., Sakai, K., Shigematsu, H., Shimokawa, H., and Takeshita, A. (2001) Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 38, 896–901.

    PubMed  CAS  Google Scholar 

  67. Tyagi, S. C., Smiley, L. M., and Mujumdar, V. S. (1999) Homocysteine impairs endocardial endothelial function. Can. J. Physiol. Pharmacol. 77, 950–957.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh C. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, S.C., Lominadze, D. & Roberts, A.M. Homocysteine in microvascular endothelial cell barrier permeability. Cell Biochem Biophys 43, 37–44 (2005). https://doi.org/10.1385/CBB:43:1:037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:1:037

Index Entries

Navigation