Skip to main content
Log in

Osmosis and solute—Solvent drag

Fluid transport and fluid exchange in animals and plants

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to included the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries, (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure. On the contrary, when no diffusion barrier separates differing parts of an aqueous solution, fluid may flow from the part with the higher osmotic pressure to the part with the lower osmotic pressure because the solute molecules diffuse toward their lower concentration and they drag on the water through which they diffuse. This latter osmotic effect (diffusing solute dragging on solvent or counterosmosis) between differing parts of a solution has long been neglected and ignored when explaining fluid fluxes in plant and animal physiology. For two solutions separated by a semipermeable membrane, osmosis is the flow of its solvent from the solution with the lower solute concentration into the solution with the higher solute concentration. For two contiguous solutions not separated by a semipermeable membrane, counterosmosis is the flow of solution with the higher solute concentration toward the solution with the lower solute concentration. Corrective treatment of medical disorders attributable to faulty distribution of body fluids (e.g., glaucoma, pulmonary edema, systemic edema) are possible with these new insights regarding fluid transport and exchange provided in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hulett, G. (1903), Beziehung zwischen negativem Druck und osmotischem Druck. Z. Phys. Chem. 42, 353–368.

    Google Scholar 

  2. Lewis, G. N. (1908) The osmotic pressure of concentrated solutions, and the laws of the perfect solution. J. Am. Chem. Soc. 30, 668–683.

    Article  CAS  Google Scholar 

  3. Laidler, K. J. (1993), The World of Physical Chemistry, Oxford University Press, NY.

    Google Scholar 

  4. Hammel, H. T. and Scholander, P. F. (1976) Osmosis and Solvent Tension, Springer-Verlag, Berlin.

    Google Scholar 

  5. Dutrochet, R. J. H. (1828) Nouvelles recherches sur l'endosmose et l'exoosmose. JB Ballière, Paris.

    Google Scholar 

  6. Traube, M. (1867) Experimente zur theorie der zellenbildung und endosome. Arch. Anat. Physiol. Wiss. Med. 87–165

  7. Krogh, A. (1959), The Anatomy and Physiology of Capillaries. Hafner Publishing Company, New York.

    Google Scholar 

  8. Pfeffer, W. (1877), Osmotische Untersuchungen, Studien zur Zellenmechanik, Leipzig. Translation into English in Harper's Scientific Memoirs (Ames, J. S. and Jones, H. C. eds.), New York, 1899.

  9. van't Hoff, J. H. (1886) Une propriété général de la matiére diluée. Svenska Vet. Akad. Handl. 21, 17, 43.

    Google Scholar 

  10. van't Hoff, J. H. (1886) Lois de l'équilibre chemique dans l'état dilus gazeux ou dissous. Svenska Vet. Akad. Handl. 21, 17, 217.

    Google Scholar 

  11. van't Hoff, J. H. (1887) Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Z. Physik. Chem. 1, 481–508.

    Google Scholar 

  12. Hammel, H. T. and Schlegel, W. W. (2003) Explaining osmosis: by altered water concentration or by altered internal water tension. FASEB J. 8, 14.

    Google Scholar 

  13. van't Hoff, J. H. (1892), Zur Theorie der Lösungen. Z. Physik. Chem. 9, 477.

    Google Scholar 

  14. Meyer, L. (1890) Uber das Wessen des osmotischen Druckes. Z. Phys. Chem. 7, 23–27.

    Google Scholar 

  15. Fermi, E. (1936) Thermodynamics, Dover Publications Inc.

  16. Scholander, P. F., Hammel, H. T., Bradstreet, E. D., and Hemmingsen, E. A. (1965) Sap pressure in vascular plants. Science 148, 339–347.

    Article  PubMed  Google Scholar 

  17. Chinard, F. P. and Enns, T. (1956) Osmotic pressure. Science 124, 473–474.

    Article  Google Scholar 

  18. Scholander, P. F. (1971) State of water in osmotic processes. Microvasc. Res. 3, 215–232.

    Article  PubMed  CAS  Google Scholar 

  19. Mysels, K. (1959). Introduction to Colloid Chemistry. Interscience Publishers, Inc., New York.

    Google Scholar 

  20. Mysels, K. J. (1978) Solvent tension or solvent concentration. J. Chem. Ed. 55, 21–22.

    CAS  Google Scholar 

  21. Mysels, K. J. (1997) Vapor pressure lowering, somotic pressure, and the elementary pseudogas model. J. Phys. Chem. B. 101, 1893–1896.

    Article  CAS  Google Scholar 

  22. Hammel, H. T. and Scholander, P. F. (1973) Thermal motion and forced migration of colloidal particles generate hydrostatic pressure in solvent. Proc. Nat. Acad. Sci. U.S.A. 70, 124–129.

    Article  CAS  Google Scholar 

  23. Hammel, H. T. and Scholander, P. F. (1976) Osmosis and Tensile Solvent. Springer-Verlag, Berlin-New York.

    Google Scholar 

  24. Hammel, H. T. (1976) Colligative properties of a solution: enhanced tension in the solvent gives rise to alteration in solution. Science 192, 748–756.

    Article  PubMed  CAS  Google Scholar 

  25. Hammel, H. T. (1986) Solubility and enhanced altered tension of solute in solution. Phys. Chem. Liq. 15, 185–202.

    Article  CAS  Google Scholar 

  26. Hammel, H. T. (1979) Forum on Osmosis. I. Osmosis: diminished solvent activity or altered solvent tension? Am. J. Physiol. 237, R95-R107.

    PubMed  CAS  Google Scholar 

  27. Hammel, H. T. (1994) How solutes alter water in aqueous solutions. J. Phys. Chem. 98, 4196–4204.

    Article  CAS  Google Scholar 

  28. Hammel, H. T. (1998) Replacing Lewis' theory of osmosis with Hulett's theory of altered chemical potentials of reacting constituents in solution. Recent Res. Dev. Phys. Chem. 2, 77–111.

    CAS  Google Scholar 

  29. Hammel, H. T. (1999) Evolving ideas about osmosis and capillary fluid exchange FASEB J. 13, 213–223.

    PubMed  CAS  Google Scholar 

  30. Hildebrand, J. H. (1979) Forum on osmosis: II. A criticism of “solvent tension” in osmosis. Am. J. Physiol. 237, R110-R113.

    Google Scholar 

  31. Mauro, A. (1997). Forum on Osmosis. III. Comments on Hammel and Schlolander's solvent tension theory and its application to osmotic flow. Am. J. Physiol. 237, R108-R109.

    Google Scholar 

  32. Soodak, H. and Iberall, A (1979) Forum on osmosis IV. More on osmosis and diffusion. Am. J. Physiol. 237, R114-R122.

    PubMed  CAS  Google Scholar 

  33. Andrews, F. C. (1976) Colligative properties of simple solutions: solutes simply dilute the solvent; they do not cause tension in the solvent. Science 194, 567–571.

    Article  PubMed  Google Scholar 

  34. Lachish, U. L. (1978) Derivation of some basic properties of ideal gases and solutions from processes of elastic collisions. J. Chem. Ed. 55, 369–371.

    CAS  Google Scholar 

  35. Katz, M. A. and Bresler, E. H. (1984) Osmosis, in Edema (Staub, N. C. and Taylor, A. E., eds.) Raven Press, New York.

    Google Scholar 

  36. Ben-Sasson, S. A. and Grover, N. B. (2003) Osmosis: a macroscopic phenomenon, a microscopic view. Adv. Physiol. Ed., 27, 15–19.

    CAS  Google Scholar 

  37. West, J. B. (1990) Best and Taylor's Physiological Basis of Medical Practice 12th ed. Williams & Wilkins, Baltimore.

    Google Scholar 

  38. Withers, P. C. (1992) Comparative Animal Physiology, Saunders College Publishing HBJ, Philadelphia.

    Google Scholar 

  39. Pauling, L. (1964), College Chemistry: An Introductory Textbook of General Chemistry: Section 17–18; W. H. Freeman & Co., San Francisco.

    Google Scholar 

  40. Schultz, S. G. (1980) Basic Principles of Membrane Transport. Cambridge University Press, New York.

    Google Scholar 

  41. Lewis, G. N. and Randall, M. (1961) Thermodynamics (revised by Pitzer, K. S. and Brewer, L. II, eds.) McGraw-Hill, New York.

    Google Scholar 

  42. Raoult, F. M. (1878) Sur la tension de vapeur et sur le point de cong'elation de solutions salines. Compt. Rend. 87, 167–171.

    Google Scholar 

  43. Raoult, F. M. (1883) Lo de cong'elation des solutions aqueuses des materl'eres organiques. Ann. Chim. Phys. 28, 133–144.

    Google Scholar 

  44. Raoult, F. M. (1882) Loi de cong'elation des solutions benzeniques des substances neutres. Comput. Rend. 95, 187.

    Google Scholar 

  45. Raoult, F. M. (1882) Loi de geng'elation des dissolvents. Compt. Rend. 95, 1030–1033.

    Google Scholar 

  46. Schermer, M. (2002) Smart people believe weird things—rarely does anyone weigh the facts before deciding what to believe. Sci. Am. 287, 35.

    Article  Google Scholar 

  47. Guyton, A. C. and Hall, J. E. (2000) Textbook of Medical Physiology. 10th ed. W. B. Saunders Co., Philadelphia.

    Google Scholar 

  48. Millero, F. G. and Knox, J. H. (1973) Apparent molal volumes of aqueous NaF, Na2SO4, KCl, K2SO4, MgCl2 and MgSO4 solutions at 0°C and 50°C. J. Chem. Eng. Data 18, 407–411.

    Article  CAS  Google Scholar 

  49. Ussing, N. S. (1952) Some aspects of the application of tracers in permeability studies. Adv. Enzymol. 13, 21.

    CAS  Google Scholar 

  50. Pappenheimer, J. R. (1953) Passage of molecules through capillary walls. Physiol. Rev. 33, 389–423.

    Google Scholar 

  51. Mauro, A. (1957) Nature of solvent transfer in osmosis. Science 126, 252–253.

    Article  PubMed  CAS  Google Scholar 

  52. Meschia, G. and Setnikar, I. (1959) Experimental study of osmosis through a collodion membrane. J. Gen. Physiol. 42, 429–444.

    Article  Google Scholar 

  53. Dobson, H. J. E. (1925) The partial pressures of aqueous ethyl alcohol. J. Chem. Soc. (London) 127, 2866–2873.

    CAS  Google Scholar 

  54. Dixon, H. (1903) A transpiration model. Roy. Dublin Soc. Sci. Proc. 10, 114–121.

    Google Scholar 

  55. Dixon, H. H. (1914), Transpiration and the Ascent of Sap in Plants, Macmillan and Co., London.

    Google Scholar 

  56. Slatyer, R. O., (1967) Plant-Water Relationships. Academic Press, London.

    Google Scholar 

  57. Noble, P. S. (1999) Physicochemical & Environmental Plant Physiology. 2nd ed. Academic Press, San Diego.

    Google Scholar 

  58. Zimmerman, U., Haase, A., Langbein, D., and Meinzer, F. C. (1993) Mechanisms of long distance water transport in plants: a reexamination of some paradigms in the light of new evidence. Philos. Trans. Roy. Soc. London Ser. B. 341, 19–31.

    Article  Google Scholar 

  59. Canny, M. J. (1998) Transporting water in plants. Am. Sci. 86, 152–159.

    Article  Google Scholar 

  60. Steudle, E. (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 847–875.

    Article  CAS  Google Scholar 

  61. Noyes, A. (1900) Die genaue Beziehung zwischen osmotischen Druck und Dampfdruck. Z. Phys. Chem. 35, 707–721.

    Google Scholar 

  62. Herzfeld, K. F. (1937) Thermodynamische und kinetische Betrachtungen über die Zuststandekommen der Dampfdruckerniedrigung von Lösungen. Phys. Z. 38, 58–64.

    CAS  Google Scholar 

  63. Duclaux, J. (1965) Théorie de gas. J. Chim. Phys. 65, 435–443.

    Google Scholar 

  64. Hudson, C. S. (1906) The freezing of pure liquids and solutions under various kinds of positive and negative pressure and the similarity between osmotic pressure and negative pressure. Phys. Rev. 22, 257–264.

    Google Scholar 

  65. Renner, O. (1915) Theoretisches und Experimentelles zur Koheäionstheorie der Wasserbewegung. Jahrbücher für wissenschaftliche. Botanik 56, 617–667.

    Google Scholar 

  66. Hammel, H. T. (1995) Roles of colloidal molecules in Starling's hypothesis and in returning interstitial fluid to the vasa recta. Am. J. Physiol. 268, H2133-H2145.

    PubMed  CAS  Google Scholar 

  67. Hammel, H. T. (1991) Internal pressure, hard core and free space volumes and Boltzmann's rule. Phys. Chem. Liq. 23, 69–86.

    Article  CAS  Google Scholar 

  68. Hammel, H. T. (1996) Boltzmann's principle depicts distribution of water molecules between vapor and liquid for pure liquid and for aqueous solutions. J. Phys. Chem. 99, 8392–8401.

    Article  Google Scholar 

  69. Hildebrand, J. H. (1928). Internal pressure. In: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. 4. (Washburn, E. W., ed.) Knovel, p. 19.

  70. Soret, Ch. (1884) Arch. Sci. Phys. Nat. 12, 615.

    Google Scholar 

  71. Hammel, H. T. and Maggert, J. E. (1980) Super separation: Soret effect reversed. Separ. Sci. Tech. 15, 81–87.

    Article  Google Scholar 

  72. Schlegel, W. M., Prange, H. D., Furia, E. J., Bowyer, T. D., and Hammel, H. T. (2003) Rethinking the teaching of osmosis. FASEB J. 11, 14.

    Google Scholar 

  73. Hammel, H. T. (2002) Osmotic effects on solvent of solute diffusing in solution. Int. Adv. Res. Physical Chem. 2, 11–33.

    Google Scholar 

  74. Kiil, F. (1982) Kinetics of osmosis. Kidney Int. 21, 303–308.

    Article  PubMed  CAS  Google Scholar 

  75. McKenna, M. J., Heigenhauser, G. J. F., McKelvie, R. S., MacDougal, J. D., and Jones, N. L. (1997) Sprint training enhances ionic regulation during intense exercise in man. J. Physiol. 501, 687–702.

    Article  PubMed  CAS  Google Scholar 

  76. Åstrand, P. O., Rodahl, K., Dahl, H. A., and Strømme, S. R. (2003), Textbook of Work Physiology: Physiological Basis of Exercise 4th ed. Human Kinetics, Champaign, IL.

    Google Scholar 

  77. Starling, E. H. (1896) On the absorption of fluids from connective tissue spaces. J. Physiol. (Lond.) 19, 312–326, 80.

    CAS  Google Scholar 

  78. Schmidt-Nielsen, K. (1979) Animal Physiology: Adaptation and Environment. 2nd ed. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  79. Levick, J. R. (2004) Revision of the Starling principle: new views of tissue fluid balance. J. Physiol. (Lond.) 557, 704.

    Article  CAS  Google Scholar 

  80. Michel, C. C. (2004) Fluid exchange in the microcirculation. J. Physiol. (Lond.) 557, 701–702.

    Article  CAS  Google Scholar 

  81. Adamson, R. H., Lenz, J. F., Zhang, X., Adamson, G. N., Weinbaum, S., and Currie, F. E. (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. (Lond.) 557, 889–907.

    Article  CAS  Google Scholar 

  82. Hammel, H. T. (2004) Ingesting only glucose: behavioral adaptation to lessen high altitude pulmonary edema. Adaptation Biology and Medicine, Volume 4: Current Concepts. (Hargens, A. R., Takeda, N., and Singal, P. K., eds.) Narosa Book distributors Pvt. Ltd., New Delhi, pp. 124–136.

    Google Scholar 

  83. Tripathi, R. C. and Tripathi, B. J. (1984) Anatomy of the eye, orbit, and adnexa, in The Eye. 3rd ed. (Davson, H., ed.). Academic Press, New York.

    Google Scholar 

  84. Davson, H. (1969) The intraocular fluids. The Eye Vol. 1. Ed. H. Academic Press, New York.

    Google Scholar 

  85. Hammel, H. T. (1968) Measurement of turgor pressure and its gradient in the phloem of oak. J. Plant Physiol. 43, 1042–1048.

    Article  Google Scholar 

  86. Münch, E. (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer Verlagsbuchhandlung, Jena, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Whitney M. Schlegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammel, H.T., Schlegel, W.M. Osmosis and solute—Solvent drag. Cell Biochem Biophys 42, 277–345 (2005). https://doi.org/10.1385/CBB:42:3:277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:42:3:277

Index Entries

Navigation