Skip to main content
Log in

Three-dimensional simulations of airways within human lungs

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Information regarding the deposition patterns of inhaled particles has important implications to the fields of medicine and risk assesment. The former concerns the targeted delivery of inhaled pharmacological drugs (aerosol therapy); the latter concerns the risk assessment of inhaled air pollutants (inhalation toxicology). It is well documented in the literature that the behavior and fate of inhaled particles may be formulated using three families of variables: respiratory system morphologies, aerosol characteristics, and ventilatory parameters. It is straightforward to propose that the seminal role is played by morphology per se because the structures of individual airways and their spatial orientations within lungs affect the motion of air and the trajectories of transported particles. In previous efforts, we have developed original algorithms to describe airway networks within lungs and employed them as templates to interpret the results of single photon emission computed tomography (SPECTs) studies. In this work, we have advanced the process of mathematical modeling and computer simulations to produce three-dimensional (3D) images. We have tested the new in silico model by studying two different branching concepts: an inclusive (all airways present) system and a single “typical” pathway system. When viewed with the glasses supplied with this volume, the 3D nature of airway branching networks within lungs as displayed via our original computer graphics software is clear. We submit that the new technology will have numerous and seminal functions in future medical and toxicological regimens, the most fundamental being the creation of a platform to view natural 3D structures in vivo with related biological processes (e.g., disposition of inhaled pharmaceuticals).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martonen, T. B. (1993) Mathematical model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci. 82, 1191–1199.

    Article  PubMed  CAS  Google Scholar 

  2. Martonen, T. B. and Katz, I. (1993) Deposition patterns of polydisperse aerosols within human lungs. J. Aerosol Med. 6, 251–274.

    Google Scholar 

  3. Martonen, T. B. and Katz, I. (1993) Deposition patterns of aerosolized drugs within human lungs: effects of ventilatory parameters. Pharm. Res. 10, 871–878.

    Article  PubMed  CAS  Google Scholar 

  4. Martonen, T. B. and Katz, I. M. (1994) Interrelated effects of morphology and ventilation on drug deposition patterns. S.T.P. Pharm. Sci. 4, 11–18.

    Google Scholar 

  5. Martonen, T. B. and Schroeter, J. D. (2003) Risk assessment dosimetry model for inhaled particulate matter: I. Human subjects. Toxicol. Lett. 138, 119–132.

    Article  PubMed  CAS  Google Scholar 

  6. Martonen, T. B. and Schroeter, J. D. (2003) Risk assessment dosimetry model for inhaled particulate matter: II. Laboratory surrogates (rat). Toxicol. Lett. 138, 133–142.

    Article  PubMed  CAS  Google Scholar 

  7. Martonen, T. B., Fleming, J., Schroeter, J. D., Conway, J., and Hwang, D. (2003) In silico modeling of asthma. Adv. Drug Del. Rev. 55, 829–849.

    Article  CAS  Google Scholar 

  8. Martonen, T. B., Bell, K. A., Phalen, R. F., Ho, A., and Wilson, A. F. (1982) Growth rate measurements and deposition modelling of hygroscopic aerosols in human tracheobronchial models. In: Inhaled Particles V. (Walton, W., ed.). Pergamon Press, Oxford; pp 93–108.

    Google Scholar 

  9. Finlay, W. H. (1998) Estimating the type of hygroscopic behavior exhibited by aqueous droplets. J. Aerosol Med. 11, 221–229.

    PubMed  CAS  Google Scholar 

  10. Martonen, T. B., Yang, Y., Dolovich, M., and Guan, X. (1997) Computer simulations of lung morphologies within planar gamma images. Nucl. Med. Commun. 18, 861–869.

    Article  PubMed  CAS  Google Scholar 

  11. Martonen, T. B., Hwang, D., Guan, X., and Fleming, J. S. (1998) Supercomputer description of human lung morphology for imaging analysis. J. Nucl. Med. 39, 745–750.

    PubMed  CAS  Google Scholar 

  12. Martonen, T. B., Musante, C. J., Segal, R. A., Schroeter, J. D., Hwang, D., Dolovich, M., et al. (2000) Lung models: strengths and limitations. Respir. Care 45, 712–736.

    PubMed  CAS  Google Scholar 

  13. Martonen, T. B. (1982) Analytical model of hygroscopic particle behavior in human airways. Bull. Math. Biol. 44, 425–442.

    PubMed  CAS  Google Scholar 

  14. Martonen, T. B. (1983) On the fate of inhaled particles in the human: a comparison of experimental data with theoretical computations based on a symmetric and asymmetric lung. Bull. Math. Biol. 45, 409–424.

    PubMed  CAS  Google Scholar 

  15. Musante, C. J. and Martonen, T. B. (2000) Computer simulations of particle deposition in the developing lung. J. Air Waste Manage. Assoc. 50, 1426–1432.

    CAS  Google Scholar 

  16. Segal, R. A., Guan, X., Shearer, M., and Martonen, T. B., (2000) Mathematical model of airflow in the lungs of children. I. Effects of tumor sizes and locations. J. Theor. Med. 2, 199–213.

    Google Scholar 

  17. Guan, X., Segal, R. A., Shearer, M., and Martonen, T. B. (2000) Mathematical model of airflow in the lungs of children. II. Effects of ventilatory parameters. J. Theor. Med. 3, 51–62.

    Google Scholar 

  18. Martonen, T. B., Katz, I. M., and Cress, W. (1995) Aerosol drug deposition as a function of airway disease: cystic fibrosis. Pharm. Res. 12, 96–102.

    Article  PubMed  CAS  Google Scholar 

  19. Martonen, T. B., Hwang, D., Katz, I., and Yang, Y. (1997) Cystic fibrosis: treatment with a supercomputer drug delivery model. Adv. Engin. Software 28, 359.

    Article  Google Scholar 

  20. Segal, R. A., Martonen, T. B., Kim, C. S., and Shearer, M. (2002) Computer simulations of particle deposition in the lungs of chronic obstructive pulmonary disease patients. Inhal. Toxicol. 14, 705–720.

    Article  PubMed  CAS  Google Scholar 

  21. Findeisen, W. (1935) Uber das absetzen kleiner in der luft suspendierter teilchen in der menschlichen lunge bei der atmung. Pfluegers Arch. Ges. Physiol. 236, 367–379.

    Article  Google Scholar 

  22. Landahl, H. D. (1950) On the removal of airborne droplets by the human respiratory tract. I. The lung. Bull. Math. Biophys. 12, 43–56.

    Article  Google Scholar 

  23. Beeckmans, J. M. (1965) The deposition of aerosols in the respiratory tract. I. Mathematical analysis and comparison with experimental data. Can. J. Physiol. Pharmacol. 43, 157–172.

    PubMed  CAS  Google Scholar 

  24. Martonen, T. B., Yang, Y., and Xue, Z. (1994) Influences of cartilaginous rings on tracheobronchial fluid dynamics. Inhal. Toxicol. 6, 185–203.

    Article  Google Scholar 

  25. Martonen, T. B., Yang, Y., and Xue, X. (1994) Effects of acarinal ridge shapes on lung airstreams. Aerosol Sci. Tech. 21, 119–136.

    Article  Google Scholar 

  26. Martonen, T. B., Zhang, Z., and Yang, Y. (1995) Airway surface irregularities promote particle diffusion in the human lung. Rad. Prot. Dosim. 59, 5–14.

    Google Scholar 

  27. Martonen, T. B., Zhang, Z., and Yang, Y. (1997) Particle diffusion from developing flows in rough-walled tubes, Aerosol Sci. Technol. 26, 1–11.

    Article  CAS  Google Scholar 

  28. Zhang, Z. and Martonen, T. (1995) Deposition of ultrafine aerosols in human tracheobronchial airways. Inhal. Toxicol. 9, 99–110.

    Google Scholar 

  29. Zhang, Z. and Martonen, T. (1996) Comparison of theoretical and experimental particle diffusion data within human airway casts. Cell Biochem. Biophys. 27, 97–108.

    Google Scholar 

  30. Martonen, T. B., Zhang, Z., Yang, Y., and Bottei, G. Gas transport in human airways. Inhal. Toxicol. 7, 303–318.

  31. Martonen, T. B. and Guan, X. (2001) Effects of tumors on inhaled pharmacologic drugs: I. Flow patterns. Cell Biochem. Biophys. 35, 233–243.

    Article  PubMed  CAS  Google Scholar 

  32. Martonen, T. B. and Guan, X. (2001) Effects of tumors on inhaled pharmacologic drugs: II. Particle motion. Cell Biochem. Biophys. 35, 245–253.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, Z., Kleinstreuer, C., and Hickey, A. J. (2002) Aerosol transport and deposition in a triple bifurcation bronchial airway model with local tumors. Inhal. Tox. 14, 1111–1133.

    Article  CAS  Google Scholar 

  34. Martonen, T. B. (2001) Commentary: effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways. J. Med. Engr. Tech. 25, 124–126.

    Article  CAS  Google Scholar 

  35. Musante, C. J. and Martonen, T. B. (2001) Computational fluid dynamics in human lungs: I. Effects of natural airway features. p. 131–145. In Medical Applications of Computer Modelling: The Respiratory System. (Martonen, T. B., ed.) WIT Press, Southampton, UK.

    Google Scholar 

  36. Musante, C. J. and Martonen, T. B. (2001) Computational fluid dynamics in human lungs: II. Effects of airway disease. p. 147–164. In Medical Applications of Computer Modelling: The Respiratory System. (Martonen, T. B., ed.) WIT Press, Southampton, UK.

    Google Scholar 

  37. Guan, X. and Martonen, T. B. (1997) Simulations of flow in curved tubes. Aerosol Sci. Tech. 26, 485.

    Article  CAS  Google Scholar 

  38. Guan, X. and Martonen, T. B. (2000) Flow transition in bends and applications to airways. J. Aerosol Sci. 31, 833–847.

    Article  CAS  Google Scholar 

  39. Martonen, T. B., Guan, X., and Schreck, R. M. (2001) Fluid dynamics in airway bifurcations: I. Primary flows. Inhal. Toxicol. 13, 261–279.

    Article  PubMed  CAS  Google Scholar 

  40. Martonen, T. B., Guan, X., and Schreck, R. M. (2001) Fluid dynamics in airway bifurcations: II. Secondary currents. Inhal. Toxicol. 13, 281–289.

    Article  PubMed  CAS  Google Scholar 

  41. Martonen, T. B., Guan, X., and Schreck, R. M. (2001) Fluid dynamics in airway bifurcations: III. Localized flow conditions. Inhal. Toxicol. 13, 291–305.

    Article  PubMed  CAS  Google Scholar 

  42. Comer, J. J., Kleinstreuer, C., and Zhang, Z. (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J. Fluid Mech. 435, 25–54.

    Article  Google Scholar 

  43. Comer, J. J., Kleinstreuer, C., and Kim, C. S. (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J. Fluid Mech. 435, 55–80.

    Article  Google Scholar 

  44. Zhang, Z., Kleinstreuer, C., and Kim, C. S. (2001) Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models. J. Biomech. 34, 659–669.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang, Z., Kleinstreuer, C., and Kim, C. S. (2002) Cyclic micron-sized particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol. Sci. 33, 257–281.

    Article  CAS  Google Scholar 

  46. Schlesinger, R. B. and Lippmann, M. (1976) Particle deposition in the trachea: in vivo and in hollow casts. Thorax 31, 678–684.

    PubMed  CAS  Google Scholar 

  47. Chan, T. L., Schreck, R. M., and Lippmann, M. (1980) Effect of the laryngeal jet on particle deposition in the human trachea and upper bronchial airways. J. Aerosol Sci. 11, 447–459.

    Article  Google Scholar 

  48. Martonen, T. B. (1983) Measurement of particle dose distribution in a model of a human larynx and tracheobronchial tree. J. Aerosol Sci. 14, 11–22.

    Article  Google Scholar 

  49. Cohen, B. S., Sussman, R. G., and Lippmann, M. (1990) Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 12, 1082–1091.

    Article  Google Scholar 

  50. Cohen, B. S. and Asgharian, B. (1990) Deposition of ultrafine particles in the upper airways: an empirical analysis. J. Aerosol Sci. 27, 139–150.

    Google Scholar 

  51. Martonen, T. B. and Lowe, J. (1983) Assessment of aerosol deposition patterns in human respiratory tract casts. pp. 151–164. In: International Symposium on Aerosols in the Mining and Industrial Work Environment. (Liu, B. and V. Marple, eds.), Ahn Arbor Science, Ann Arbor, MI.

    Google Scholar 

  52. Katz, I. M. and Martonen, T. B. (1997) Flow patterns in three dimensional laryngeal models. J. Aerosol Med. 9, 501–511.

    Google Scholar 

  53. Katz, J. M. and Martonen, T. B. (1997) Three-dimensional fluid particle trajectories in the human larynx and trachea. J. Aerosol Med., 9, 513–519.

    Google Scholar 

  54. Katz, I. M., Martonen, T. B., and Flaa, W. (1997) Three-dimensional computational study of inspiratory aerosol flow through the larynx: the effect of glottal aperture modulation. J. Aerosol Sci. 28, 1073–1083.

    Article  CAS  Google Scholar 

  55. Katz, I. M., Davis, B. M., and Martonen, T. B. (1999) A numerical study of particle motion within the human larynx trachea. J. Aerosol Sci. 30, 173–183.

    Article  CAS  Google Scholar 

  56. Keyhani, K., Scherer, P. W., and Mozell, M. M. (1995) Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117, 429–441.

    PubMed  CAS  Google Scholar 

  57. Subramaniam, R. P., Richardson, R. B., Morgan, K. T., and Guilmette, R. A. (1998) Computational fluid dynamics simulations of inspiratory airflow in the human nose naropharynx. Inhal Tox., 10, 91–120.

    Article  CAS  Google Scholar 

  58. Frederick, C. B., Bush, M. L., Lomax, L. G., Black, K. A., Finch, L., Kimbell, J. S., et al. (1998) Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol. Appl. Pharm. 152, 211–231.

    Article  CAS  Google Scholar 

  59. Schroeter, J. D., Musante, C. J., Hwang, D., Burton, R., Guilmette, R., and Martonen, T. B. (2001) Hygroscopic growth and deposition of inhaled secondary cigarette smoke in human nasal pathways. Aerosol Sci. Technol. 34, 137–143.

    Article  CAS  Google Scholar 

  60. Martonen, T. B., Zhang, Z., Yu, G., and Musante, C. J. (2001) Three-dimensional computer modeling of the human upper respiratory tract. Cell Biochem. Biophys 35, 255–261.

    Article  PubMed  CAS  Google Scholar 

  61. Martonen, T. B., Quan, L., Zhang, Z., and Musante, C. J. (2002) Flow simulation in the human upper respiratory tract. Cell Biochem. Biophys. 37, 27–36.

    PubMed  CAS  Google Scholar 

  62. Martonen, T. B., Zhang, Z., Yue, G., and Musante, C. J. (2002) 3-D particle transport within the human upper respiratory tract. J. Aerosol Sci. 33, 1095–1110.

    Article  CAS  Google Scholar 

  63. Martonen, T. B., Zhang, Z., Yue, G. and Musante, C. J. (2003) Fine particle deposition within human nasal airways. Inhal. Toxicol. 15, 283–303.

    Article  PubMed  CAS  Google Scholar 

  64. Weibel, E. R. (1963) Morphometry of the Human Lung, Academic Press, New York.

    Google Scholar 

  65. Weibel, E. R. (1991) Design of airways and blood vessels as branching trees. In The Lung-Scientific Foundations (Crystal, R. G., West, J. B., Barnes, P. J., Cherniack, N. S., and Weibel, E. R. eds. Raven Press, New York; pp. 711–720.

    Google Scholar 

  66. Sbirlea-Apjiu G., Lemaire, M., Katz, I., Conway, J., Fleming, J., and Martonen, T. (2004) Simulation of the regional manifestation of asthma. J. Pharm. Sci. 93, 1205–1216.

    Article  CAS  Google Scholar 

  67. Martonen, T. B., Barnett, A. E., and Miller, F. J. (1985) Ambient sulfate deposition in man: modeling the influence of hygroscopicity. Environ. Health Persp. 63, 11–24.

    Article  CAS  Google Scholar 

  68. Martonen, T. ., Ménache, M. G., Hofmann, W., and Eisner, A. D. (1989) The role of particle hygroscopicity in aerosol therapy and inhalation toxicology. In: Extrapolation Modeling of Inhaled Particles and Gases: Lung Dosimetry. (Crapo, J. D., Smolko, E. D., Miller, F. J. Graham, J. A., and Hayes, A. W., eds.). Academic Press, New York, pp. 303–316.

    Google Scholar 

  69. Finlay, W. H., Stapleton, K. W., and Zuberbuhler, P. (1997) Fine particle fraction as a measure of mass depositing in the lung during inhalation of nearly isotonic nebulized aerosols. J. Aerosol Sci. 28, 1301–1309.

    Article  CAS  Google Scholar 

  70. Hickey, A. J. and Martonen, T. B. (1993) Behavior of hygroscopic pharmaceutical aerosols and the influence of hydrophobic additives. Pharm. Res. 10, 1–7.

    Article  PubMed  CAS  Google Scholar 

  71. Lippmann, M. and Albert, R. E. (1969) The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 30, 257–275.

    PubMed  CAS  Google Scholar 

  72. Chan, T. L. and Lippmann, M. L. (1980) Experimental measurement and empirical modelling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41, 399–409.

    PubMed  CAS  Google Scholar 

  73. Stahlhofen, W., Gebhart, J., and Heyder, J. (1981) Biological variability of regional deposition of aerosol particles in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 42, 348–352.

    PubMed  CAS  Google Scholar 

  74. Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F., and Stahlhofen, W. (1986) Deposition of particles in the human respiratory system in the size range 0.005–15 mm. J. Aerosol Sci. 17, 811–825.

    Article  Google Scholar 

  75. Horsfield, K. (1991) Pulmonary airways and blood vessels considered as confluent trees, In: The Lung: Scientific Foundations (Crystal, R. G., West, J. B., Barnes, P. J., Cherniack, N. S., and Weibel, E. R., eds.), Raven Press, New York; pp. 721–727.

    Google Scholar 

  76. Horsfield, K., Dart, G., Olson, D. E., Filley, G. F., and Cumming, G. (1971) Models of the human bronchial tree. J. Appl. Physiol. 31, 207–217.

    PubMed  CAS  Google Scholar 

  77. Martonen, T. B., Yang, Y., Hwang, D., and Fleming, J. S. (1994) Mapping the human lung using Delaunay tessellation. Comput. Biomed. Res. 27, 245–262.

    Article  PubMed  CAS  Google Scholar 

  78. Martonen, T. B., Yang, Y., Hwang, D., and Fleming, J. S. (1995) Computer model of human lung morphology to complement SPECT analyses. Int. J. Biomed. Comput. 40, 5–16.

    Article  PubMed  CAS  Google Scholar 

  79. Martonen, T. B., Yang, Y., Hwang, D., and Fleming, J. S. (1995) Computer simulations of human lung structures for medical applications. Comput. Biol. Med. 25, 431–446.

    Article  PubMed  CAS  Google Scholar 

  80. Martonen, T. B., Schroeter, J. D., Hwang, D., Fleming, J. S., and Conway, J. H. (2000) Human lung morphology models for particle deposition studies. Inhal. Toxicol. 12, 109–121.

    Article  PubMed  CAS  Google Scholar 

  81. Kitaoka, H., Takaki, R., and Suki, B. (1999) A three-dimensional model of the human airway tree. J. Appl. Physiol. 87, 2207–2217.

    PubMed  CAS  Google Scholar 

  82. Lee, Z., Berridge, M. S., Finlay, W. H., and Heald, D. L. (2000) Mapping PET-measured triamcinolone acetonide (TAA) aerosol distribution into deposition by airway generation. Int. J. Pharm. 199, 7–16.

    Article  PubMed  CAS  Google Scholar 

  83. Lee, Z., Berridge, M. S., and Heald, D. L. (2000) Evaluation of planar gamma camera scintigraphy vs. PET imaging used for pulmonary deposition of inhaled aerosols. Int. J. Nucl. Med. 1, 28–39.

    Google Scholar 

  84. Lee, Z., Ljungberg, M., Muzic, R. F., Jr., and Berridge, M. S. (2001) Usefulness and pitfalls of planar g-scintigraphy for measuring aerosol deposition in the lungs: a Monte Carlo investigation. J. Nucl. Med. 42, 1077–1083.

    PubMed  CAS  Google Scholar 

  85. Schroeter, J. D., Fleming, J. S., Hwang, D., and Martonen, T. B. (2002) A computer model of lung morphology to analyze SPECT images. Comp. Med. Imag. Graph. 26, 237–246.

    Article  Google Scholar 

  86. Spencer, R. M., Schroeter, J. D., and Martonen, T. B. (2001) Computer simulations of lung airway structures using data-driven surface modeling techniques. Comp. Biol. Med. 31, 499–511.

    Article  CAS  Google Scholar 

  87. Bailey, M., and Clark, D. (1998) Using ChromaDepth to obtain inexpensive single-image stereovision for scientific visualization. J. Graph. Tools 3, 1–9.

    Google Scholar 

  88. Newcott, W. R. (1998) Return to Mars. Nat. Geographic 194, 2–29.

    Google Scholar 

  89. MacInnis, J. B. (1998) Titanic: tragedy in three dimensions. Nat. Geographic 194, 120–127.

    Google Scholar 

  90. Burton, R. T., Isaacs, K. K., Fleming, J. S., and Martonen, T. B. (2004) Computer reconstruction of a human lung boundary model from magnetic resonance images. Respir. Care 49, 180–185.

    PubMed  Google Scholar 

  91. Fleming, J. S., Nassim, M., Hashish, A., Bailey, A., Conway, J., Holgate, S., et al. (1995) Description of pulmonary deposition of radiolabelled aerosol by airway generation using a conceptual three dimensional model of lung morphology. J. Aerosol Med. 8, 341–356.

    Google Scholar 

  92. Fleming, J. S., Nassim, M., Hashish, A., Bailey, A., Conway, J., Holgate, S., et al. Three dimensional description of pulmonary deposition of inhaled aerosol using data from multi-modality imaging. J. Nuclear Med. 37, 873–877 (1996).

    CAS  Google Scholar 

  93. Fleming, J. S., Hashish, A., Conway, J., Nassim, M., Holgate, S., Halson, P., et al. (1996) Assessment of deposition of inhaled aerosol in the respiratory tract of man using three dimensional multimodality imaging and mathematical modelling. J. Aerosol Med. 9, 317–327.

    PubMed  CAS  Google Scholar 

  94. Fleming, J. S., Hashish, A. H., Conway, J. H., Hartley-Davies, R., Nassim, M. A., Guy, M. J., et al. (1997) A technique for simulating radionuclide images from the aerosol deposition pattern in the airway tree. J. Aerosol Med. 10, 199–212.

    Article  Google Scholar 

  95. Feming, J. S., Conway, J. H., Holgate, S. T., Moore, E. A., Hashish, A. H., Bailey, A. G., et al. (1998) Evaluation of the accuracy and precision of lung aerosol deposition measurements from planar radionuclide imaging using simulation. Phys. Med. Biol. 43, 2423–2429.

    Article  Google Scholar 

  96. Fleming, J. S., Sauret, V., Conway, J. H., Holgate, S. T., Bailey, A. G., and Martonen, T. B. (2000) Evaluation of the accuracy and precision of lung aerosol deposition measurements from single photon emission computed tomography using simulation, J. Aerosol Med. 13, 187–198.

    PubMed  CAS  Google Scholar 

  97. Fleming, J. S., Conway, J. H., Holgate, S. T., Bailey, A. G., and Martonen, T. B. (2000) Comparison of methods for deriving aerosol deposition by airway generation from three-dimensional radionuclide imaging. J. Aerosol Sci. 31, 1251–1259.

    Article  CAS  Google Scholar 

  98. Katz, I. M., Schroeter, J. D., and Martonen T. B. (2001) Factors affecting the deposition of aerosolized insulin. 3, 387–397.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Martonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martonen, T., Isaacs, K. & Hwang, D. Three-dimensional simulations of airways within human lungs. Cell Biochem Biophys 42, 223–249 (2005). https://doi.org/10.1385/CBB:42:3:223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:42:3:223

Index Entries

Navigation