Skip to main content
Log in

Optical techniques for imaging membrane topography

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In recent years three powerful optical imaging techniques have emerged that provide nanometer-scale information about the topography of membrane surfaces, whether cellular or artificial: intermembrane fluorescence resonance energy transfer (FRET), fluorescence interference contrast microscopy (FLIC), and reflection interference contrast microscopy (RICM). In intermembrane FRET, the sharp distance dependence of resonant energy transfer between fluorophores allows topographic measurements in the Ångstrom to few-nanometer range. In FLIC and RICM, interference between light from a membrane (either from fluorescent probes, or reflected illumination) and light reflected by a planar substrate provide spatial sensitivity in the few to hundreds of nanometer range, with few-nanometer resolution. All of these techniques are fairly easy to implement. We discuss the physics and optics behind each of these tools, as well as practical concerns regarding their uses. We also provide examples of their application in imaging molecular-scale structures at intermembrane junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, S. I. and Goldsmith, H. L. (2002) Leukocyte adhesion dynamics in shear flow. Ann. Biomed. Eng. 30, 315–332.

    Article  PubMed  Google Scholar 

  2. Dworak, H. A. and Sink, H. (2002) Myoblast fusion in Drosophila. BioEssays 24, 591–601.

    Article  PubMed  CAS  Google Scholar 

  3. Gilbert, S. F. (2000) Developmental Biology, 6th ed. Sinauer, Sunderland, MA.

    Google Scholar 

  4. Singer, S. J. (1992) Intercellular communication and cell-cell adhesion. Science 255, 1671–1677.

    Article  PubMed  CAS  Google Scholar 

  5. Dustin, M. L. and Colman, D. R. (2002) Neural and immunological synaptic relations. Science 29, 785–789.

    Article  CAS  Google Scholar 

  6. Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M., et al. (1999) The immunological synapse: a molecular machine controlling T-cell activation. Science 285, 221–227.

    Article  PubMed  CAS  Google Scholar 

  7. Weber, I. (2003) Reflection interference contrast microscopy. Meth. Enzymol. 361, 34–47.

    PubMed  CAS  Google Scholar 

  8. Wiegand, G., Neumaier, K. R., and Sackmann, E. (1998) Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM). Appl. Opt. 37, 6892–6905.

    CAS  PubMed  Google Scholar 

  9. Axelrod, D., Hellen, E. H., and Fulbright, R. M. (1992) Total internal reflection fluorescence, in Topics in Fluorescence Spectroscopy, vol. 3 (Lakowicz, J. R., ed.), Plenum, New York.

    Google Scholar 

  10. Thompson, N. L., Drake, A. W., Chen, L., and Vanden Broek, W. (1997) Equilibrium, kinetics, diffusion and self-association of proteins at membrane surfaces: measurement by total internal reflection fluorescence microscopy. Photochem. Photobiol. 65, 39–46.

    PubMed  CAS  Google Scholar 

  11. Ajo-Franklin C. M., Kam, L., and Boxer, S. G. (2001) High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast. Proc. Natl. Acad. Sci. USA 98, 13643–13648.

    Article  PubMed  CAS  Google Scholar 

  12. Selvin, P. R. (2000) The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734.

    Article  PubMed  CAS  Google Scholar 

  13. Clegg, R. M. (1995) Fluorescence resonance energy transfer. Curr. Op. Biotech. 6, 103–110.

    Article  CAS  Google Scholar 

  14. Clegg, R. M. (1996) Fluorescence resonance energy transfer, in Fluorescence Imaging Spectroscopy and Microscopy (Wang, X. F. and Herman, B., ed.), John Wiley & Sons, New York.

    Google Scholar 

  15. Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum, New York.

    Google Scholar 

  16. Periasami, A. (2001) Fluorescence resonance energy transfer microscopy: a mini-review. J. Biomed. Opt. 6, 287–291.

    Article  Google Scholar 

  17. Wu, P. and Brand, L. (1994) Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.

    Article  PubMed  CAS  Google Scholar 

  18. Förster, T. (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Physik. 2, 55–75.

    Article  Google Scholar 

  19. Förster, T. (1959) Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17.

    Article  Google Scholar 

  20. Förster, T. (1965) Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, vol. 3 (Sinanoglu, O., ed.), Academic Press, New York.

    Google Scholar 

  21. Kuhn, H. (1971) Classical aspects of energy transfer in molecular systems. J. Chem. Phys. 53, 101–108.

    Article  Google Scholar 

  22. Stryer, L. and Haugland, R. P. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726.

    Article  PubMed  CAS  Google Scholar 

  23. Stryer, L. (1978) Fluorescence resonance energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    Article  PubMed  CAS  Google Scholar 

  24. Clegg, R. M., Murchie, A. I. H., Zechel, A., and Lilley, D. M. J. (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 90, 2994–2998.

    Article  PubMed  CAS  Google Scholar 

  25. Mergny, J.-L., Boutorine, A. S., Garestier, T., Belloc, G., Rougé, M., Bulychev, N. V., et al. (1994) Fluorescence resonance energy transfer as a probe for nucleic acid structures and sequences. Nucleic Acids Res. 22, 920–928.

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T., and Sutoh, K. (1998) Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383.

    Article  PubMed  CAS  Google Scholar 

  27. Sadqi, M., Lapidus, L. J., and Muñoz, V. (2003) How fast is protein hydrophobic collapse?. Proc. Natl. Acad. Sci. USA 100, 12117–12122.

    Article  PubMed  CAS  Google Scholar 

  28. Corbalan-Garcia, S., Teruel, J. A., and Gomez-Fernandez, J. C. (1993) Intramolecular distances within the Ca2+-ATPase from sarcoplasmic reticulum as estimated through fluorescence energy transfer between probes. Eur. J. Biochem. 217, 737–744.

    Article  PubMed  CAS  Google Scholar 

  29. Baker, K. J., East, J. M., and Lee, A. C. (1994) Localization of the hinge region of the Ca2+-ATPase of sarcoplasmic reticulum using resonance energy transfer. Biochim. Biophys. Acta 1192, 53–60.

    Article  PubMed  CAS  Google Scholar 

  30. Miyawaki, A. and Tsien, R. Y. (2000). Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Meth. Enzym. 327, 472–500.

    Article  PubMed  CAS  Google Scholar 

  31. Varma, R. and Mayor, S. (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801.

    Article  PubMed  CAS  Google Scholar 

  32. Kenworthy, A. K., Petranova, N., and Edidin, M. (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.

    PubMed  CAS  Google Scholar 

  33. Niles, W. D., Silvius, J. R., and Cohen, F. S. (1996) Resonance energy transfer imaging of phospholipid vesicle interaction with a planar phospholipid membrane: undulations and attachment sites in the region of calcium-mediated membrane-membrane adhesion. J. Gen. Physiol. 107, 329–351.

    Article  PubMed  CAS  Google Scholar 

  34. Wong, A. P. and Groves, J. T. (2001) Topographical imaging of an intermembrane junction by combined fluorescence interference and energy transfer microscopies. J. Am. Chem. Soc. 123, 12414–12415.

    Article  PubMed  CAS  Google Scholar 

  35. Wong, A. P. and Groves, J. T. (2002) Molecular topography imaging by intermembrane fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 99, 14147–14152.

    Article  PubMed  CAS  Google Scholar 

  36. Sackmann, E. (1996) Supported membranes: scientific and practical applications. Science 271, 43–48.

    Article  PubMed  CAS  Google Scholar 

  37. Boxer, S. G. (2000) Molecular transport and organization in supported lipid membranes. Curr. Opin. Chem. Biol. 4, 704–709.

    Article  PubMed  CAS  Google Scholar 

  38. Groves, J. T. and Boxer, S. G. (2002) Micropattern formation in supported lipid membranes. Acc. Chem. Res. 35, 149–157.

    Article  PubMed  CAS  Google Scholar 

  39. Merritt, E. A., Sarfaty, S., Akker, F. V. D., L'Hoir, C., Martial, J. A., and Hol, W. G. J. (1994) Crystal structure of cholera toxin B-pentamer bound to receptor G(M1) pentasaccharide. Protein Sci. 3, 166–175.

    Article  PubMed  CAS  Google Scholar 

  40. Parthasarathy, R. and Groves, J. T. (2004) Nonequilibrium adhesion patterns at lipid bilayer junctions. J. Phys. Chem. B. 108, 649–657.

    Article  CAS  Google Scholar 

  41. Kaizuka, Y. and Groves, J. T. (2004) Structure and dynamics of supported intermembrane junctions. Biophys. J. 86, 905–912.

    Article  PubMed  CAS  Google Scholar 

  42. Zeck, G. and Fromherz, P. (2003) Repulsion and attraction by extracellular matrix protein in cell adhesion studied with nerve cells and lipid vesicles on silicon chips. Langmuir 19, 1580–1585.

    Article  CAS  Google Scholar 

  43. Iwanaga, Y., Braun, D., and Fromherz, P. (2001) No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of DiI. Eur. Biophys. J. 30, 17–26.

    Article  PubMed  CAS  Google Scholar 

  44. Kiessling, V., and Tamm, L. K. (2003) Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. Biophys. J. 84, 408–418.

    PubMed  CAS  Google Scholar 

  45. Lambacher, A. and Fromherz, P. (1996) Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer. Appl. Phys. A 63, 207–216.

    Article  Google Scholar 

  46. Braun, D. and Fromherz, P. (1997) Fluorescence interference contrast microscopy of cell adhesion on silicon. Appl. Phys. A 65, 341–348.

    Article  CAS  Google Scholar 

  47. Lambacher, A. and Fromherz, P. (2002) Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes. J. Opt. Soc. Am. B 19, 1435–1453.

    CAS  Google Scholar 

  48. Jellison, G. E. and Modine, F.A. (1982) Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry. J. Appl. Phys. 53, 3745–3753.

    Article  CAS  Google Scholar 

  49. Landolt, H. and Börnstein, R. (1962). Numerical Data and Functional Relationships in Science and Technology, 6th ed., Vol. 2, Springer, Berlin.

    Google Scholar 

  50. Swan, A. K., Moiseev, L. A., Cantor, C. R., Davis, B., Ippolito, S. B., Karl, W. C., et al. (2003) Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference. IEEE J. Sel. Top. Quantum Electron. 9, 294–300.

    Article  CAS  Google Scholar 

  51. Eah, S.-K., Jaeger, H. M., Scherer, N. F., Wiederrecht, G. P., and Lin, X.-M. (manuscript in preparation).

  52. Medhage, B., Mukhtar, E., Kalman, B., Johansson, L., and Molotkovsky, J. G. (1992) J. Chem. Soc. Faraday Trans. 88, 2845–2841.

    Article  CAS  Google Scholar 

  53. Nardi, J., Bruinsma, R., and Sackmann, E. (1998) Adhesion-induced reorganization of charged fluid membranes. Phys. Rev. E 58, 6340–6354.

    Article  CAS  Google Scholar 

  54. Gu, M. (2000) Advanced Optical Imaging Theory, Springer, Heidelberg.

    Google Scholar 

  55. Parthasarathy, R. and Groves, J. T. (2004) Protein patterns at lipid bilayer junctions. Proc. Natl. Acad. Sci. USA 101, 12,798–12,803.

    Article  CAS  Google Scholar 

  56. Curtis, A. S. G. (1964) The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 20, 199–215.

    Article  PubMed  CAS  Google Scholar 

  57. Ploem, J. S. (1975). Reflection contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface, in Mononuclear Phagocytes in Immunity Infection and Pathology (van Furth, R., ed.), Blackwell, Oxford.

    Google Scholar 

  58. Rädler, J. and Sackmann, E. (1993) Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J. Phys. II France 3, 727–748.

    Article  Google Scholar 

  59. Verschueren, H. (1985) Interference reflection microscopy in cell biology: methodology and applications. J. Cell. Sci. 75, 279–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay T. Groves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathy, R., Groves, J.T. Optical techniques for imaging membrane topography. Cell Biochem Biophys 41, 391–414 (2004). https://doi.org/10.1385/CBB:41:3:391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:3:391

Index Entries

Navigation