Skip to main content
Log in

Redox status of the eye lens

A regional study

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The aim of this work was to study the regional variation of some antioxidant systems in calf lens. Specific lens regions of nearly same age were obtained by a microsectioning technique, and the concentration of reduced and oxidized glutathione, protein sulfhydryl groups and iron were measured in each lens region. The concentration of reduced glutathione, the major redox buffer in lens, exponentially decreased from the cortical regions to the nucleus. In contrast, the concentration of protein sulfhydryl groups gradually increased from the cortex toward the nucleus. The protein-bound disulfides remained constant throughout the lens. Iron was concentrated in the outer cortical region.

The results show that the most dynamic redox-active zone in the lens is the subcapsular cortical region where the oxidant flux meets a highly reducing environment containing a potent redox catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linetsky, M., James, H. L., and Ortwerth, B. J. (1999) Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro. Exp. Eye Res. 69, 239–248.

    Article  PubMed  CAS  Google Scholar 

  2. Fu, S., Dean, R., Southan, M., and Truscott, R. (1998) The hydroxyl radical in lens nuclear cataractogenesis. J. Biol. Chem. 273, 28603–28609.

    Article  PubMed  CAS  Google Scholar 

  3. Spector, A. (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J. 9, 1173–1182.

    PubMed  CAS  Google Scholar 

  4. Hockwin, O., Schmutter, J., and Müller, H. K. (1963). Untersuchung über Gewicht und volumen verschieden alter rinderlinsen. Graefe's Arch. Clin. Exp. Ophtalmol. 166, 136–151.

    Google Scholar 

  5. Anderson, M. E. (1985) Tissue glutathione, in CRC Handbook of Methods for Oxygen Radical Research (Greenwald, R. A., ed.), CRC Press, Inc., Florida, pp. 317–323.

    Google Scholar 

  6. Habeeb, A. F. S. A. (1972) Reaction of protein sulfhydryl groups with Ellman's reagent. Methods Enzymol. 25, 457–464.

    Article  CAS  Google Scholar 

  7. Seligman, P. A. and Scleicher, R. B. (1999) Comparison of methods used to measure serum iron in the presence of iron gluconate or iron dextran. Clin. Chem. 45, 898–900.

    PubMed  CAS  Google Scholar 

  8. Babizhayev, M. A., Bours, J., and Utikal, K. J. (1996) Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Ophthalm. Res. 28, 365–374.

    Article  CAS  Google Scholar 

  9. Eckhert, C. (1983) Elemental concentrations in ocular tissues of various species. Exp. Eye Res. 37, 639–647.

    Article  PubMed  CAS  Google Scholar 

  10. Saxena, P., Saxena, A. K., Cui, X-L., Obrenovich, M., Gudipaty, K. and Monnier, V. M. (2000) Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: Possible role of advanced glycation products. Invest. Opthalmol. Vis. Sci. 41, 1473–1481.

    CAS  Google Scholar 

  11. Hockwin, O., Ahrend, M. H. J., and Bours, J. (1986) Correlation of Scheimpflug photography of the anterior eye segment with biochemical analysis of the lens. Graefe's Arch. Clin. Exp. Ophtalmol. 224, 265–270.

    Article  CAS  Google Scholar 

  12. Reddy, V. N. (1990) Glutathione and its function in the lens: an overview. Exp. Eye Res. 50, 771–778.

    Article  PubMed  CAS  Google Scholar 

  13. Giblin, F. J. (2000) Glutathione: a vital lens antioxidant. J. Ocul. Pharmacol. Ther. 16, 121–135.

    Article  PubMed  CAS  Google Scholar 

  14. Fagerholm, P. P., Philipson, B. T., and Lindström, B. (1981) Normal human lens: the distribution of protein. Exp. Eye Res. 33, 615–620.

    Article  PubMed  CAS  Google Scholar 

  15. Sweeney, M. H. and Truscott, R. J. (1998) An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp. Eye Res. 67, 587–595.

    Article  PubMed  CAS  Google Scholar 

  16. Garner, W. H., Garner, M. H., and Spector, A. (1981) Gamma-crystallin, a major cytoplasmic polypeptide disulfide linked to membrane proteins in human cataract. Biochem. Biophys. Res. Commun. 98, 439.

    Article  PubMed  CAS  Google Scholar 

  17. Schafer, F. Q. and Buettner, G. R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad. Biol. Med. 30, 1191–1212.

    Article  PubMed  CAS  Google Scholar 

  18. Yu, N. T., DeNagel, D. C., Pruett, P. L., and Kuck, J. F. Jr. (1985). Disulfide bond formation in the eye lens. Proc. Natl. Acad. U. S. A. 82, 7965–7968.

    Article  CAS  Google Scholar 

  19. Wistow, G. J. and Piatigorsky, J. (1988) Lens crystallins: the evolution and expression of proteins for highly specialized tissue. Ann. Rev. Biochem. 57, 479–504.

    Article  PubMed  CAS  Google Scholar 

  20. Zigler, J. S., Jr. and Rao, P. V. (1991) Enzyme/crystallins and extremely high pyridine nucleotide levels in the eye lens. FASEB J. 5, 223–225.

    PubMed  CAS  Google Scholar 

  21. Harding, J. J. (1970) Free and protein-bound glutathione in normal and cataractous human lenses. Biochem. J. 117, 957–960.

    PubMed  CAS  Google Scholar 

  22. Dickerson, J. E. and Lou, M. F. (1993) A new mixed disulfide species in human cataractous and aged lenses. Biochem. Biophys. Acta 1157, 141–146.

    PubMed  CAS  Google Scholar 

  23. Kono, M., Sen, A. C. and Chakrabarti, B. (1990) Thermodynamics of thermal and athermal denaturation of γ-crystallins: changes in conformational stability upon glutathione reaction. Biochemistry 29, 464–470.

    Article  PubMed  CAS  Google Scholar 

  24. Cherian, M., Smith, J. B., Jiang, X. Y., and Abraham, E. C. (1997) Influence of protein-glutathione mixed disulfide on the chaperone-like function of alpha-crystallin. J. Biol. Chem. 272, 29099–29103.

    Article  PubMed  CAS  Google Scholar 

  25. Garner, B., Roberg, K., Qian, J. W., and Truscott, R. J. (2000) Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses. Exp. Eye Res. 71, 599–607.

    Article  PubMed  CAS  Google Scholar 

  26. Garland, D. (1990) Role of site-specific, metalcatalyzed oxidation in lens aging and cataract: a hypothesis. Exp. Eye Res. 50, 677–682.

    Article  PubMed  CAS  Google Scholar 

  27. Zigler, J. S., Jr., Huang, Q. L., and Du, X. Y. (1989) Oxidative modification of lens crystallins by H2O2 and chelated iron. Free Rad. Biol. Med. 7, 499–505.

    Article  PubMed  CAS  Google Scholar 

  28. Spector, A., Ma, W., and Wang, R. R. (1998) The aqueous humor is capable of generating and degrading H2O2. Invest. Ophthalmol. Vis. Sci. 39, 1188–1197.

    PubMed  CAS  Google Scholar 

  29. Taguchi, H., Ogura, Y., Takanashi, T., Hashizoe, M., and Honda, Y. (1996) In vivo quantitation of peroxides in the vitreous humor by fluorophotometry. Invest. Ophthalmol. Vis. Sci. 37, 1444–1450.

    PubMed  CAS  Google Scholar 

  30. Giannessi, M., Del Corso, A., Cappiello, M., Voltarelli, M., Marini, I., Barsacco, D., et al. (1993) Thiol-dependent metal-catalyzed oxidation of bovine lens aldose reductase. I. Studies on the modification process. Arch. Biochem. Biophys. 300, 423–429.

    Article  PubMed  CAS  Google Scholar 

  31. Lou, M. F., Xu, G. T., and Cui, X. L. (1995) Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging. Curr. Eye Res. 14, 951–958.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Argirova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argirova, M., Kleine-Reidick, M. & Breipohl, W. Redox status of the eye lens. Cell Biochem Biophys 41, 381–389 (2004). https://doi.org/10.1385/CBB:41:3:381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:3:381

Index Entries

Navigation