Cell Biochemistry and Biophysics

, Volume 41, Issue 3, pp 343–356 | Cite as

Visualization of the uptake of individual HDL particles in living cells via the scavenger receptor class B type I

  • Sebastian Rhode
  • Anton Breuer
  • Jan Hesse
  • Max Sonnleitner
  • Tamara A. Pagler
  • Marlon Doringer
  • Gerhard J. Schütz
  • Herbert Stangl
Original Article


The scavenger receptor class B type I (SR-BI) plays an important role in mediating selective uptake of high-density lipoprotein (HDL)-derived cholesterol and cholesteryl ester in liver and steroidogenic tissues. The molecular mechanism by which this receptor mediates selective cholesteryl ester uptake remains still enigmatic. We applied ultrasensitive fluorescence microscopy to visualize the intracellular transport routes of HDL particles taken up via SR-BI in a Chinese hamster ovarian cell line. Although diffusion of the receptor bound particles on the cell surface is slow, internalization is accompanied by a dramatic increase in the mobility of the particles. HDL particles are endocytosed as clusters and actively transported to the perinuclear region of the cell. Costaining with organelle markers confirmed the involvement of an acidic compartment and the Golgi apparatus in the uptake process; finally, resecretion of the HDL particles was observed.

Index Entries

SR-BI HDL uptake selective cholesteryl ester uptake ultrasensitive microscopy retro-endocytosis chinese hamster ovarian cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gordon, D. J. and Rifkind, B. M. (1989). High-density lipoprotein—the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316.PubMedCrossRefGoogle Scholar
  2. 2.
    Eriksson, M., Carlson, L. A., Miettinen, T. A., and Angelin, B. (1999). Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans. Circulation 100, 594–598.PubMedGoogle Scholar
  3. 3.
    Badimon, J. J., Badimon, L., and Fuster, V. (1990). Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J. Clin. Invest. 85, 1234–1241.PubMedGoogle Scholar
  4. 4.
    Rubin, E. M., Krauss, R. M., Spangler, E. A., Verstuyft, J. G., and Clift, S. M. (1991). Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353, 265–267.PubMedCrossRefGoogle Scholar
  5. 5.
    Hughes, S. D., Verstuyft, J., and Rubin, E. M. (1997). HDL deficiency in genetically engineered mice requires elevated LDL to accelerate atherogenesis. Arterioscler. Thromb. Vasc. Biol. 17, 1725–1729.PubMedGoogle Scholar
  6. 6.
    Eisenberg, S. (1984). High density lipoprotein metabolism. J. Lipid. Res. 25, 1017–1058.PubMedGoogle Scholar
  7. 7.
    Tall, A. R. (1990). Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. J. Clin. Invest. 86, 379–384.PubMedGoogle Scholar
  8. 8.
    Johnson, W. J., Mahlberg, F. H., Rothblat, G. H., and Phillips, M. C. (1991). Cholesterol transport between cells and high-density lipoproteins. Biochim. Biophys. Acta. 1085, 273–298.PubMedGoogle Scholar
  9. 9.
    Tall, A. R. (1993). Plasma cholesteryl ester transfer protein. J. Lipid Res. 34, 1255–1274.PubMedGoogle Scholar
  10. 10.
    Pieters, M. N., Schouten, D., and Van Berkel, T. J. (1994). In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport. Biochim. Biophys. Acta. 1225, 125–134.PubMedGoogle Scholar
  11. 11.
    Fielding, C. J. and Fielding, P. E. (1995). Molecular physiology of reverse cholesterol transport. J. Lipid. Res. 36, 211–228.PubMedGoogle Scholar
  12. 12.
    Oram, J. F., and Yokoyama, S. (1996). Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J. Lipid. Res. 37, 2473–2491.PubMedGoogle Scholar
  13. 13.
    Breslow, J. L. (1995). Familial disordens of high-density lipoprotein metabolism, in The Metabolic and Molecular Bases of Inherited Diseases, (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 2031–2052.Google Scholar
  14. 14.
    Glass, C., Pittman, R. C., Civen, M., and Steinberg, D. (1985). Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro. J. Biol. Chem. 260, 744–750.PubMedGoogle Scholar
  15. 15.
    Glass, C., Pittman, R. C., Weinstein, D. B., and Steinberg, D. (1983). Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc. Natl. Acad. Sci. U S A 80, 5435–5439.PubMedCrossRefGoogle Scholar
  16. 16.
    Fidge, N. H. (1999). High density lipoprotein receptors, binding proteins, and ligands. J. Lipid. Res. 40, 187–201.PubMedGoogle Scholar
  17. 17.
    Krieger, M. (1999). Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI. Annu. Rev. Biochem. 68, 523–558.PubMedCrossRefGoogle Scholar
  18. 18.
    Acton, S. L., Scherer, P. E., Lodish, H. F., and Krieger, M. (1994). Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J. Biol. Chem. 269, 21003–21009.PubMedGoogle Scholar
  19. 19.
    Acton, S., Rigotti, A., Landschulz, K. T., Xu, S., Hobbs, H. H., and Krieger, M. (1996). Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520.PubMedCrossRefGoogle Scholar
  20. 20.
    Brown, M. S., and Goldstein, J. L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Landschulz, K. T., Pathak, R. K., Rigotti, A., Krieger, M., and Hobbs, H. H. (1996). Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J. Clin. Invest. 98, 984–995.PubMedGoogle Scholar
  22. 22.
    Pittman, R. C., Glass, C. K., Atkinson, D., and Small, D. M. (1987) Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters. J. Biol. Chem. 262, 2435–2442.PubMedGoogle Scholar
  23. 23.
    Azhar, S., Cooper, A., Tsai, L., Maffe, W., and Reaven, E. (1988). Characterization of apoB, E receptor function in the luteinized ovary. J. Lipid. Res. 29, 869–882.PubMedGoogle Scholar
  24. 24.
    Azhar, S., Nomoto, A., Leers-Sucheta, S., and Reaven, E. (1998). Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL cholesteryl esters in a physiologically relevant steroidogenic cell model. J. Lipid. Res. 39, 1616–1628.PubMedGoogle Scholar
  25. 25.
    Reaven, E., Tsai, L., and Azhar, S. (1995). Cholesterol uptake by the ‘selective’ pathway of ovarian granulosa cells: early intracellular events. J. Lipid. Res. 36, 1602–1617.PubMedGoogle Scholar
  26. 26.
    Sparrow, C. P. and Pittman, R. C. (1990). Cholesterol esters selectively taken up from high-density lipoproteins are hydrolyzed extralysosomally. Biochim. Biophys. Acta 1043, 203–210.PubMedGoogle Scholar
  27. 27.
    Medicherla, S., Azhar, S., Cooper, A., and Reaven, E. (1996). Regulation of cholesterol responsive genes in ovary cells: impact of cholesterol delivery systems. Biochemistry 35, 6243–6250.PubMedCrossRefGoogle Scholar
  28. 28.
    Stangl, H., Cao, G., Wyne, K. L., and Hobbs, H. H. (1998). Scavenger receptor, class B, type I-dependent stimulation of cholesterol esterification by high density lipoproteins, low density lipoproteins, and nonlipoprotein cholesterol. J. Biol. Chem. 273, 31002–31008.PubMedCrossRefGoogle Scholar
  29. 29.
    Stangl, H., Hyatt, M., and Hobbs, H. H. (1999). Transport of lipids from high and low density lipoproteins via scavenger receptor-BI. J. Biol. Chem. 274, 3269232698.CrossRefGoogle Scholar
  30. 30.
    Swarnakar, S., Temel, R. E., Connelly, M. A., Azhar, S., and Williams, D. L. (1999). Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester. J. Biol. Chem. 274, 29733–29739.PubMedCrossRefGoogle Scholar
  31. 31.
    Schmitz, G., Robenek, H., Lohmann, U., and Assmann, G. (1985). Interaction of high density lipoproteins with cholesteryl ester-laden macrophages: biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO J. 4, 613–622.PubMedGoogle Scholar
  32. 32.
    Silver, D. L., Wang, N., and Tall, A. R. (2000). Defective HDL particle uptake in ob/ob hepatocytes causes decreased recycling, degradation, and selective lipid uptake. J. Clin. Invest. 105, 151–159.PubMedGoogle Scholar
  33. 33.
    Silver, D. L., Jiang, X. C., and Tall, A. R. (1999). Increased high density lipoprotein (HDL), defective hepatic catabolism of ApoA-I and ApoA-II, and decreased ApoA-I mRNA in ob/ob mice. Possible role of leptin in stimulation of HDL turnover. J. Biol. Chem. 274, 4140–4146.PubMedCrossRefGoogle Scholar
  34. 34.
    Silver, D. L., Wang, N., Xiao, X., and Tall, A. R. (2001). High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J. Biol. Chem. 276, 25287–25293.PubMedCrossRefGoogle Scholar
  35. 35.
    Kingsley, D. M. and Krieger, M. (1984). Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc. Natl. Acad. Sci. U S A 81, 5454–5458.PubMedCrossRefGoogle Scholar
  36. 36.
    Schumaker, V. N. and Puppione, D. L. (1986). Sequential flotation ultracentrifugation. Meth. Enzymol. 128, 155–170.PubMedCrossRefGoogle Scholar
  37. 37.
    Cognet, L., Harms, G. S., Blab, G. A., Lommerse, P. H. M., and Schmidt, T. (2000). Simultaneous dual-color and dual-polarization imaging of single molecules. Appl. Phys. Lett. 77, 4052–4054.CrossRefGoogle Scholar
  38. 38.
    Basu, S. K., Goldstein, J. L., Anderson, G. W., and Brown, M. S. (1976). Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc. Natl. Acad. Sci. U S A 73, 3178–3182.PubMedCrossRefGoogle Scholar
  39. 39.
    Weisgraber, K. H., Innerarity, T. L., and Mahley, R. W. (1978). Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J. Biol. Chem. 253, 9053–9062.PubMedGoogle Scholar
  40. 40.
    Nichols, B. J., Kenworthy, A. K., Polishchuk, R. S., Lodge, R., Roberts, T. H., Hirschberg, K., et al. (2001). Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell. Biol. 153, 529–541.PubMedCrossRefGoogle Scholar
  41. 41.
    Cole, N. B., Sciaky, N., Marotta, A., Song, J., and Lippincott-Schwartz, J. (1996). Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell. 7, 631–650.PubMedGoogle Scholar
  42. 42.
    Goldstein, J. L., Brunschede, G. Y., and Brown, M. S. (1975). Inhibition of proteolytic degradation of low density lipoprotein in human fibroblasts by chloroquine, concanavalin A, and Triton WR 1339. J. Biol. Chem. 250, 7854–7862.PubMedGoogle Scholar
  43. 43.
    Shimada, A., Tamai, T., Oida, K., Takahashi, S., Suzuki, J., Nakai, T., et al. (1994). Increase in neutral cholesteryl ester hydrolase activity produced by extralysosomal hydrolysis of high-density lipoprotein cholesteryl esters in rat hepatoma cells (H-35). Biochim Biophys Acta 1215, 126–132.PubMedGoogle Scholar
  44. 44.
    Mukherjee, S., Zha, X., Tabas, I., and Maxfield, F. R. (1998). Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75, 1915–1925.PubMedCrossRefGoogle Scholar
  45. 45.
    Frolov, A., Petrescu, A., Atshaves, B. P., So, P. T., Gratton, E., Serrero, G., et al. (2000). High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach. J. Biol. Chem. 275, 12769–12780.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Sebastian Rhode
    • 1
  • Anton Breuer
    • 1
  • Jan Hesse
    • 1
  • Max Sonnleitner
    • 2
  • Tamara A. Pagler
    • 3
  • Marlon Doringer
    • 3
  • Gerhard J. Schütz
    • 1
  • Herbert Stangl
    • 3
  1. 1.Institute for BiophysicsUniversity of LinzLinzAustria
  2. 2.Center for Biomedical NanotechnologyUpper Austrian Research GmbHLinzAustria
  3. 3.Institute for Medical ChemistryMedical University of ViennaViennaAustria

Personalised recommendations