Skip to main content
Log in

Proliferation-specific genes activated by Gα12

A role for PDGFRα and JAK3 in Gα12-mediated cell proliferationcell proliferation

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

12, the α-subunit of G protein G12, is ubiquitously expressed and it has been identified as a putative “causative oncogene” of soft-tissue sarcomas. Overexpression of wild-type or GTPase-deficient mutant of Gα12 (Gα12Q229L or Gα12QL) leads to the oncogenic transformation of NIH3T3 cells. Gα12QL-tramsformed NIH3T3 cells show a distinct oncogenic phenotype defined by increased cell proliferation, anchorage-independent growth, reduced growth-factor dependency, attenuation of apoptotic signals, and neoplastic cytoskeletal changes. In this study, the genes contributing to the reduced growth-factor dependency of Gα12QL-NIH3T3 cells were identified by transcription profiling of serum-starved Gα12QL-transformed NIH3T3 (Gα12QL-NIH3T3) cells. Results from these studies indicate that Gα12QL stimulates the expression of genes that promote cell growth. The increased expressions of growth-promoting genes in Gα12QL-NIH3T3 cells were validated by semiquantitative reverse transcription-polymerase chain reaction and immunoblot analyses. Further studies aimed at investigating the critical role of two of such upregulated genes, namely PDGFRα and JAK3, indicated that the inhibition of PDGFRα or JAK3 activity-attenuated Gα12QL-mediated serum-independent cell proliferation. These studies point to possible novel autocrine and/or paracrine control mechanisms involving PDGFRα and JAK3 in Gα12-mediated proliferation and oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, G. L. and Dhanasekaran, N. (1989) The G-protein family and their interaction with receptors. Endocr. Rev. 3, 317–331.

    Article  Google Scholar 

  2. Dhanasekaran, N. and dermott, J. M. (1996) Signaling by the G12 class of G proteins. Cell Signal. 8, 235–245.

    Article  PubMed  CAS  Google Scholar 

  3. Chan, A. M., Fleming, T. P., McGovern, E. S., Chedid, M., Miki, T., and Aaronson, S. A. (1993) Expression cDNA cloning of a transforming gene encoding the wild-type Gα12 gene product. Mol. Cell. Biol. 2, 762–768.

    Google Scholar 

  4. Jiang, H., Wu, D., and Simon, M. I. (1993) The transforming activity of activated Gα12. FEBS Lett. 330, 319–322.

    Article  PubMed  CAS  Google Scholar 

  5. Xu, N., Bradley, L., Ambudkar, I., and Gutkind, J. S. (1993) A mutant α subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH3T3 cells. Proc. Natl. Acad. Sci. USA 90, 6741–6745.

    Article  PubMed  CAS  Google Scholar 

  6. Voyno-Yasenetskaya, T. A., Pace, A. M., and bourne, H. R. (1994) Mutant α subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9, 2559–2565.

    PubMed  CAS  Google Scholar 

  7. Mao, J., Xie, W., Yuan, H., Simon, M. I., Mano, H., and Wu, D. (1998) Tec/Bmx non-receptor tyrosine kinases are involved in regulation of Rho and serum response factor by Gα12/13. EMBO J. 17, 5638–5646.

    Article  PubMed  CAS  Google Scholar 

  8. Meigs, T. E., Fields, T. A., McKee, D. D., and Casey, P. J. (2001) Interaction of Gα12 and Gα13 with the cytoplasmic domain of cadherin provides a mechanism for β-catenin release. Proc. Natl. Acad. Sci. USA 98, 519–524.

    Article  PubMed  CAS  Google Scholar 

  9. Vara Prasad, M. V. V. S., Dermott, J. M., Heasley, L. E., Johnson, G. L., and Dhanasekaran, N. (1995) Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of Gα12 and Gα13. J. Biol. Chem. 270, 18,655–18,659.

    CAS  Google Scholar 

  10. Vara Prasad, M. V. V. S., Shore, S. K., and Dhanasekaran, N. (1994) Activated mutant of Gα13 induces Egr-1, c-fos, and transformation in NIH3T3 cells. Oncogene 8, 2425–2429.

    Google Scholar 

  11. Hunter, T. (2000) Signaling—2000 and beyond. Cell 100, 113–127.

    Article  PubMed  CAS  Google Scholar 

  12. O'Shea, J. J., Gadina, M., and Schreiber, R. D. (2002) Cytokine signaling in 2002: new surprises in Jak/Stat pathway. Cell 109, S121-S131.

    Article  PubMed  Google Scholar 

  13. Heldin, C. H., Ostman, A., and Ronnstrand, L. (1998) Signal transduction via platelet-derived growth factor receptors. Biochim. Biophys. Acta 1378, F79-F113.

    PubMed  CAS  Google Scholar 

  14. Levitzki, A. and Gazit, A. (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1787.

    Article  PubMed  CAS  Google Scholar 

  15. Nebigil, C. G., Launay, J-M., Hickel, P., Tournois, C., and Maroteaux, L. (2000) 5-Hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc. Natl. Acad. Sci. USA 97, 2591–2596.

    Article  PubMed  CAS  Google Scholar 

  16. Zwerner, J. P. and May, W. A. (2002) dominant negative PDGF-C inhibits growth of Ewing family tumor cell lines. Oncogene 21, 3847–3854.

    Article  PubMed  CAS  Google Scholar 

  17. Goodman, P. A., Niehoff, L. B., and Uckun, F. M. (1998) Role of tyrosine kinases in induction of the c-jun proto-oncogene in irradiated B-lineage lymphoid cells. J. Biol. Chem. 273, 17,742–17,748.

    Article  CAS  Google Scholar 

  18. Song, B. and Wang, C. (1996) Cell-type-specific platelet-derived growth factor α receptor: a role for GATA binding protein. Mol. Cell. Biol. 16, 712–723.

    PubMed  Google Scholar 

  19. Fukuoka, T., Kitami, Y., Okura, T., and Hiwada, K. (1999) Transcriptional regulation of the platelet-derived growth factor α receptor gene via CCAAT/enhancer-binding protein-δ in vascular smooth muscle cells. J. Biol. Chem. 274, 25,576–25,582.

    Article  CAS  Google Scholar 

  20. Afink, G. B., Nister, M., Stassen, B. H., et al. (1995) Molecular cloning and functional characterization of the human platelet-derived growth factor α receptor gene promoter. Oncogene 10, 1667–1672.

    PubMed  CAS  Google Scholar 

  21. Shen, Y., Devgan, G., Darnell, J. E., Jr., and Bromberg, J. F. (2001) Constitutively activated Stat3 protects fibroblasts from serum with-drawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc. Natl. Acad. Sci. USA 98, 1543–1548.

    Article  PubMed  CAS  Google Scholar 

  22. Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W., and Darnell, J. E., Jr. (1998) Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18, 2553–2558.

    PubMed  CAS  Google Scholar 

  23. Bowman, T., Garcia, R., Turkson, J., and Jove, R. (2000) STATs in oncogenesis. Oncogene 19, 2474–2488.

    Article  PubMed  CAS  Google Scholar 

  24. Herrlich, A., Daub, H., Knebel, A., et al. (1998) Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic acid-stimulated mitogenic activity in L cells. Proc. Natl. Acad. Sci. USA 95, 8985–8990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dhanasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R.N., Radhika, V., Audigé, V. et al. Proliferation-specific genes activated by Gα12 . Cell Biochem Biophys 41, 63–73 (2004). https://doi.org/10.1385/CBB:41:1:063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:1:063

Index Entries

Navigation