Skip to main content
Log in

Self-similar mitochondrial DNA

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We show that repeated sequences, like palindromes (local repetitions) and homologies between two different nucleotide sequences (motifs along the genome), compose a self-similar (fractal) pattern in mitochondrial DNA. This self-similarity comes from the looplike structures distributed along the genome. The looplike structures generate scaling laws in a pseudorandom DNA walk constructed from the sequence, called a Lévy flight. We measure the scaling laws from the generalized fractal dimension and singularity spectrum for mitochondrial DNA walks for 35 different species. In particular, we report characteristic loop distributions for mammal mitochondrial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watson, J. D., Hopkins, N. H., Roberts, J. W., Steiz, J. A., and Weiner, A. M. (1987) Molecular Biology of the Gene, 4th ed., Benjamin/Cummings, San Francisco CA.

    Google Scholar 

  2. Venter, J. C., Adams, M. D., Myers, E. W. et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  3. Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  4. McPheeters, D. S., Christensen, A., Young, E. T., Stormo, G., and Gold, L. (1986) Translational regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Res. 14, 5813–5826.

    Article  PubMed  CAS  Google Scholar 

  5. Venter, J. C., Adams, M. D., Sutton, G. G., Kerlavage, A. R., Smith, H.O., and Humkapiller, M. (1998) Shotgun sequencing of the human genome. Science 278, 1547–1551.

    Google Scholar 

  6. Myers, E. W., Sutton, G. G., Smith, H. O., Adams, M. D., and Venter, J. C. (2002) On the sequencing and assembly of the human genome. PNAS 99, 4145–4146.

    Article  PubMed  CAS  Google Scholar 

  7. Weber, J. L. and Myers, E. W. (1997) Human whole-genome shotgun sequencing. Genome Res. 7, 401–409.

    PubMed  CAS  Google Scholar 

  8. Waterston, R. H., Lander, E. S., and Sulston, J. E. (2002) On the sequencing of the human genome. PNAS 99, 3712–3716.

    Article  PubMed  CAS  Google Scholar 

  9. Green, P. (1997) Against a whole-genome shotgun. Genome Res. 7, 410–417.

    PubMed  CAS  Google Scholar 

  10. Green, P. (2002) Whole-genome disassembly. PNAS 99, 4143–4144.

    Article  PubMed  CAS  Google Scholar 

  11. Oiwa, N. N. and Goldman, C. (2000) Phylogenetic study of the spatial distribution of protein-coding and control segments in DNA chains. Phys. Rev. Lett. 85, 2396–2399.

    Article  PubMed  CAS  Google Scholar 

  12. Oiwa, N. N. and Goldman, C. Cell Biochem. Biophys., in press.

  13. Nicolis, G. and Prigogine, I. (1989) Exploring Complexity, W. H. Freeman, New York.

    Google Scholar 

  14. Haken, H. (1988) Information and Self-Organization: A Macroscopic Approach to Complex Systems, Springer-Verlag, Berlin.

    Google Scholar 

  15. Arnéodo, A., d'Aubenton-Carafa, Y., Bacry, E., Graves, P. V., Muzy, J. F., and Thermes, C. (1996) Wavelet based fractal analysis of DNA sequences. Physica D 96, 291–320.

    Article  Google Scholar 

  16. Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., et al. (1992) Fractal landscape analysis of DNA walks. Physica A 191, 25–29.

    Article  PubMed  CAS  Google Scholar 

  17. Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., et al. (1992) Long-range correlations in nucleotide sequences. Nature 356, 168–170.

    Article  PubMed  CAS  Google Scholar 

  18. Buldyrev, S. V., Goldberger, A. L., Havlin, S., et al. (1993) Fractal landscapes and molecular evolution: modeling the myosin heavy chain gene family. Biophys. J. 65, 2673–2679.

    Article  PubMed  CAS  Google Scholar 

  19. Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K., Simons, M., and Stanley, H. E. (1993) Generalized Lévy-walk model for DNA nucleotide sequences. Phys. Rev. E 47, 4514.

    Article  CAS  Google Scholar 

  20. Berthelsen, C. L., Glazier, J. A., and Skolnick, M. H. (1992) Global fractal dimension of human DNA sequences treated as pseudorandom walks. Phys. Rev. A 45, 8902–8913.

    Article  PubMed  CAS  Google Scholar 

  21. Berthelsen, C. L., Glazier, J. A., and Raghavachari, S. (1994) Effective multifractal spectrum of a random walk. Phys. Rev. E 49, 1860–1864.

    Article  CAS  Google Scholar 

  22. Glazier, J. A., Raghavachari, S., Berthelsen, C. L., and Skolnick, M. H. (1995) Reconstructing phylogeny from the multifractal spectrum of mitochondrial DNA. Phys. Rev. E 51, 2665–2668.

    Article  CAS  Google Scholar 

  23. Purugganan, M. D. (1993) Scale-invariant spatial patterns in genome organization. Phys. Lett. A 175, 252–256.

    Article  CAS  Google Scholar 

  24. Oiwa, N. N. and Fiedler-Ferrara, N. (1998) A moving-box algorithm to estimate generalized dimensions and the f(α) spectrum. Physica D 124, 210–224.

    Article  Google Scholar 

  25. Oiwa, N. N. and Glazier, J. A. (2002) The fractal structure of the mitochondrial genomes. Physica A 311, 221–230.

    Article  CAS  Google Scholar 

  26. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., and Wheeler, D. L. (2000) GenBank. Nucleic Acids Res. 28, 15–18.

    Article  PubMed  CAS  Google Scholar 

  27. Gray, M. W., Sankoff, D., and Cedergreen, R. J. (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res. 12, 5837–5852.

    Article  PubMed  CAS  Google Scholar 

  28. Li, W. (1997) The study of correlation structures of DNA sequences: a critical review. Computers Chem. 21, 257–271.

    Article  CAS  Google Scholar 

  29. Setubal, J. and Meidanis J. (1997) Introduction to Computational Molecular Biology, PWS Publishing, Boston.

    Google Scholar 

  30. Baxevanis, A. D. and Ouellete, B. F. F., eds. (2001) Bioinformatics, 2nd ed., Wiley, New York.

    Google Scholar 

  31. Goto, S., Nishioka, T., and Kanehisa, M., (1998) LIGAND: Chemical Database for Enzyme Reactions. Bioinformatics 14, 591–599.

    Article  PubMed  CAS  Google Scholar 

  32. Bussemaker, H. J., Li, H., and Siggia, E. D. (2001) Regulatory element detection using correlation with expression. Nature Genet. 27, 167–171.

    Article  PubMed  CAS  Google Scholar 

  33. Bussemaker, H. J., Li, H., and Siggia, E. D. (2000) Buiding a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. PNAS 97, 10,096–10,100.

    Article  CAS  Google Scholar 

  34. B.-L. Hao, Lee, H. C., and Zhang, S.-Y. (2000) Fractals related to long DNA sequences and complete genomes. Chaos Solitons Fractals 11, 825; Yu, Z.-G., Hao, B. L., Xie, H. M., and Chen, G. Y. (2000) Dimensions of fractals related to languages defined by tagged strings in complete genomes. Chaos Solitons Fractals 11, 2215.

    Article  CAS  Google Scholar 

  35. Kolwalczuk, M., Gierlik, A., Mackiewicz, P., Cebrat, S., and Dudek, M. R. (1999) Optimization of gene sequences under constant mutational pressure and selection. Physica A 273, 116.

    Article  Google Scholar 

  36. Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., et al. (1994) Linguistic features of noncoding DNA sequences. Phys. Rev. Lett. 73, 3169–3172; Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L. et al. (1995) Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics. Phys. Rev. E 52, 2939–2950; Mantegna, R. N., Bulyrev, S. V., Goldberger, A. L. et al. (1996) Reply. Phys. Rev. Lett. 76, 1979–1981.

    Article  PubMed  CAS  Google Scholar 

  37. Israeloff, N. E., Kaganlenko, M., and Chan, K. (1996) Can Zipf distinguish language from noise in noncoding DNA. Phys. Rev. Lett. 76, 1976; Bonhoeffer, S., Herz, A. V. M., Boerlijst, M. C., Nee, S., Nowak, M. A., and May, R. M. (1996) No signs of hidden language in noncoding DNA. Phys. Rev. Lett. 76, 1977; Voss, R. F. (1996) Comment on “Linguistic features of noncoding DNA sequences.” Phys. Rev. Lett. 76, 1978.

    Article  PubMed  CAS  Google Scholar 

  38. Bernardi, G., Olofsson, B., Filipski, J., et al. (1985) The mosaic genome of warm-blooded vertebrates. Science 228, 953–958.

    Article  PubMed  CAS  Google Scholar 

  39. Churchill, G. A. (1989) Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol. 51, 79–94.

    PubMed  CAS  Google Scholar 

  40. Bernardi, G. (2000) Isochores and the evolutionary genomics of vertebrates. Gene 241, 3–17.

    Article  PubMed  CAS  Google Scholar 

  41. Oliver, J. L., Bernaola-Gálvan, P., Carpena, P., and Román-Roldán, R. (2001) Isochore chromosome maps of eukaryotic genomes. Gene 276, 47–56.

    Article  PubMed  CAS  Google Scholar 

  42. Li, W. (2001) Delineating relative homogeneous G+C domains in DNA sequences. Gene 276, 57–72.

    Article  PubMed  CAS  Google Scholar 

  43. Bernardi, G (1989) The isochore organization of the human genome. Annu. Rev. Genet. 23, 637–661.

    Article  PubMed  CAS  Google Scholar 

  44. Gates, M. A. (1986) A simple way to look at DNA. J. Theor. Biol. 119, 319–328.

    Article  PubMed  CAS  Google Scholar 

  45. Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia I., and Shraiman, B. I. (1986) Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151.

    Article  PubMed  Google Scholar 

  46. Hao, B.-L. (1989) Elementary Dynamics and Chaos in Dissipative Systems, World Scientific, Singapore.

    Google Scholar 

  47. McCauley, J. L. (1993) Chaos, Dynamics and Fractals, Cambridge University Press, Cambridge.

    Google Scholar 

  48. Takens, F. (1981) Detecting strange attractors in turbulence. Lect. Notes Math. 898, 366–381.

    Article  Google Scholar 

  49. Block, A., von Bloh, W., and Schellnhuber, H. J. (1990) Efficient box-counting determination of generalized fractal dimensions. Phys. Rev. A 42, 1869–1874.

    Article  PubMed  Google Scholar 

  50. Hou, X.-J., Gilmore, R., Mindlin, G. B., and Solari, H. G. (1990) An efficient algorithm for fast O(N+ln(N)) box counting. Phys. Lett. A 151, 43–46.

    Article  Google Scholar 

  51. Meisel, L. V., Johnson M., and Cote, P. J. (1992) Box-counting multifractal analysis. Phys. Rev. A 45, 6989–6995.

    Article  PubMed  Google Scholar 

  52. Yamaguti, M. and Prado, C. P. C. (1997) A smart covering for a box-counting algorithm. Phys. Rev. E 55, 7726–7732.

    Article  CAS  Google Scholar 

  53. Oiwa, N. N. and Fiedler-Ferrara, N. (2002) Lyapunov spectrum from time series using moving boxes. Phys. Rev. E 65, 036702/1–10.

    Article  CAS  Google Scholar 

  54. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989) Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.

    Google Scholar 

  55. Tél, T., Fülöp A., and Vicsek, T. (1989) Determination of fractal dimensions for geometrical multifractals. Physica A 159, 155–166.

    Article  Google Scholar 

  56. Chhabra, A. B., Meneveau, C., Jensen, R. V., and Sreenivasan, K. R. (1989) Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 40, 5284–5294.

    Article  PubMed  Google Scholar 

  57. Yamaguti, M. and Prado, C. P. C. (1995) A direct calculation of the spectrum of singularities f(α) of multifractals. Phys. Lett. A 206, 318–322.

    Article  CAS  Google Scholar 

  58. Abarbanel, H. D. I. and Kennel, M. B. (1993) Local false nearest neighbors and dynamical dimensions from observed chaotic data. Phys. Rev. E 47, 3057–3068.

    Article  Google Scholar 

  59. Eckmann, J.-P. and Ruelle, D. (1985) Ergodic theory of chaos. Rev. Mod. Phys. 57, 617–656.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nestor N. Oiwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oiwa, N.N., Glazier, J.A. Self-similar mitochondrial DNA. Cell Biochem Biophys 41, 41–62 (2004). https://doi.org/10.1385/CBB:41:1:041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:1:041

Index Entries

Navigation