Skip to main content
Log in

(Pro)Insulin processing

A historical perspective

  • Pancreatic And Islet Cell Biology
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Insulin, the major secreted product of the β-cells of the islets of Langerhans, is initially synthesized as a precursor (preproinsulin), from which the mature hormone is excised by a series of proteolytic cleavages. This review provides a personal narrative of some of the key research projects leading to the identification of the central processing enzymes as proprotein convertase 1, proprotein convertase 2, and carboxypeptidase E. It also discusses the central roles of the intragranular environment and chaperone-like proteins in modulating processing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryle, A. P., Sanger, F., Smith, L. F., and Kitai, R. (1955) The disulphide bonds of insulin. Biochem. J. 60, 542–556.

    Google Scholar 

  2. Sures, I., Goeddel, D. V., Gray, A., and Ullrich, A. (1980) Nucleotide sequence of human preproinsulin complementary DNA. Science 208, 57–59.

    Article  PubMed  CAS  Google Scholar 

  3. Ullrich, A., Dull, T. J., Gray, A., Brosius, J., and Sures, I. (1980) Genetic variation in the human insulin gene. Science 209, 612–615.

    Article  PubMed  CAS  Google Scholar 

  4. Dev, I. K. and Ray, P. H. (1990) Signal peptidases and signal peptide hydrolases. J. Bioenerg. Biomembr. 22, 271–290.

    Article  PubMed  CAS  Google Scholar 

  5. Givol, D., De Lorenzo, F., Goldberger, R. F., and Anfinsen, C. B. (1965) Disulfide interchange and the three-dimensional structure of proteins. Proc. Natl. Acad. Sci. USA 53, 676–684.

    Article  PubMed  CAS  Google Scholar 

  6. Steiner, D. F. and Oyer P. E. (1967) The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl. Acad. Sci. USA 57, 473–480.

    Article  PubMed  CAS  Google Scholar 

  7. Steiner, D. F., Cunningham, D., Spigelman, L., and Aten, B. (1967) Insulin biosynthesis: evidence for a precursor. Science 157, 697–700.

    Article  PubMed  CAS  Google Scholar 

  8. Chance, R. E., Ellis, R. M., and Bromer, W. W. (1968) Porcine proinsulin: characterization and amino acid sequence. Science 161, 165–167.

    Article  PubMed  CAS  Google Scholar 

  9. Nolan, C., Margoliash, E., Peterson, J. D., and Steiner, D. F. (1971) The structure of bovine proinsulin. J. Biol. Chem. 246, 2780–2795.

    PubMed  CAS  Google Scholar 

  10. Clark, J. L., Cho, S., Rubenstein, A. H., and Steiner, D. F. (1969) Isolation of a proinsulin connecting peptide fragment (C-peptide) from bovine and human pancreas. Biochem. Biophys. Res. Commun. 35, 456–461.

    Article  PubMed  CAS  Google Scholar 

  11. Kemmler, W., Peterson, J. D., and Steiner, D. F. (1971) Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase B. J. Biol. Chem. 246, 6786–6791.

    PubMed  CAS  Google Scholar 

  12. Orci, L., Like, A. A., Amherdt, M., Blondel, B., Kanazawa, Y., Marliss, E. B., et al. (1973) Monolayer cell culture of neonatal rat pancreas: an ultrastructural and biochemical study of functioning endocrine cells. J. Ultrastruct. Res. 43, 270–297.

    Article  PubMed  CAS  Google Scholar 

  13. Sorenson, R. L., Steffes, M. W., and Lindall, A. W. (1970) Subcellular localization of proinsulin to insulin conversion in isolated rat islets. Endocrinology 86, 88–96.

    PubMed  CAS  Google Scholar 

  14. Kemmler, W., Steiner, D. F., and Borg, J. (1973) Studies on the conversion of proinsulin to insulin. 3. Studies in vitro with a crude secretion granule fraction isolated from rat islets of Langerhans. J. Biol. Chem. 248, 4544–4551.

    PubMed  CAS  Google Scholar 

  15. Hutton, J. C., Penn, E. J., and Peshavaria, M. (1982) Isolation and characterization of insulin secretory granules from a rat islet cell tumour. Diabetologia 23, 365–373.

    Article  PubMed  CAS  Google Scholar 

  16. Docherty, K. and Hutton, J. C. (1983) Carboxypeptidase activity in the insulin secretory granule. FEBS Lett. 162, 137–141.

    Article  PubMed  CAS  Google Scholar 

  17. Hutton, J. C. (1984) Secretory granules. Experientia 40, 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  18. Steiner, D. F., Docherty, K., and Carroll, R. (1984) Golgi/granule processing of peptide hormone and neuropeptide precursors: a minireview. J. Cell. Biochem. 24, 121–130.

    Article  PubMed  CAS  Google Scholar 

  19. Fricker, L. D. and Snyder, S. H. (1982) Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc. Natl. Acad. Sci. USA 79, 3886–3890.

    Article  PubMed  CAS  Google Scholar 

  20. Fricker, L. D., Plummer, T. H., Jr., and Snyder, S. H (1983) Enkephalin convertase: potent, selective, and irreversible inhibitors. Biochem. Biophys. Res. Commun. 111, 994–1000.

    Article  PubMed  CAS  Google Scholar 

  21. Davidson, H. W. (1987) “Enzymes involved in the conversion of proinsulin to insulin in the rat,” PhD thesis, University of Cambridge, Cambridge UK.

    Google Scholar 

  22. Davidson, H. W. and Hutton, J. C. (1987) The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem. J. 245, 575–582.

    PubMed  CAS  Google Scholar 

  23. Guest, P. C., Ravazzola, M., Davidson, H. W., Orci, L., and Hutton, J. C. (1991) Molecular heterogeneity and cellular localization of carboxypeptidase H in the islets of Langerhans. Endocrinology 129, 734–740.

    Article  PubMed  CAS  Google Scholar 

  24. Steiner, D. F., Hallund, O., Rubenstein, A., Cho, S., and Bayliss, C. (1968) Isolation and properties of proinsulin, intermediate forms, and other minor components from crystalline bovine insulin. Diabetes 17, 725–736.

    PubMed  CAS  Google Scholar 

  25. Guest, P. C., Arden, S. D., Rutherford, N. G., and Hutton, J. C. (1995) The post-translational processing and intracellular sorting of carboxypeptidase H in the islets of Langerhans. Mol. Cell. Endocrinol. 113, 99–108.

    Article  PubMed  CAS  Google Scholar 

  26. Fricker, L. D., Evans, C. J., Esch, F. S., and Herbert, E. (1986) Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature 323, 461–464.

    Article  PubMed  CAS  Google Scholar 

  27. Fricker, L. D., Adelman, J. P., Douglass, J., Thompson, R. C., von Strandmann, R. P., and Hutton, J. (1989) Isolation and sequence analysis of cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme. Mol. Endocrinol. 3, 666–673.

    PubMed  CAS  Google Scholar 

  28. Varlamov, O. and Fricker, L. D. (1996) The C-terminal region of carboxypeptidase E involved in membrane binding is distinct from the region involved with intracellular routing. J. Biol. Chem. 271, 6077–6083.

    Article  PubMed  CAS  Google Scholar 

  29. Supattapone, S., Fricker, L. D., and Snyder, S. H. (1984) Purification and characterization of a membrane-bound enkephalin-forming carboxypeptidase, “enkephalin convertase.” J. Neurochem. 42, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  30. Naggert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., et al. (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat. Genet. 10, 135–142.

    Article  PubMed  CAS  Google Scholar 

  31. Varlamov, O., Leiter, E. H., and Fricker, L. (1996) Induced and spontaneous mutations at Ser202 of carboxypeptidase E. Effect on enzyme expression, activity, and intracellular routing. J. Biol. Chem. 271, 13981–13986.

    Article  PubMed  CAS  Google Scholar 

  32. Varlamov, O., Fricker, L. D., Furukawa, H., Steiner, D. F., Langley, S. H., and Leiter, E. H. (1997) Beta-cell lines derived from transgenic Cpe(fat)/Cpe(fat) mice are defective in carboxypeptidase E and proinsulin processing. Endocrinology 138, 4883–4892.

    Article  PubMed  CAS  Google Scholar 

  33. Fricker, L. D., Berman, Y. L., Leiter, E. H., and Devi, L. A. (1996) Carboxypeptidase E activity is deficient in mice with the fat mutation. Effect on peptide processing. J. Biol. Chem. 271, 30619–30924.

    Article  PubMed  CAS  Google Scholar 

  34. Dong, W., Fricker, L. D., and Day, R. (1999) Carboxypeptidase D is a potential candidate to carry out redundant processing functions of carboxypeptidase E based on comparative distribution studies in the rat central nervous system. Neuroscience 89, 1301–1317.

    Article  PubMed  CAS  Google Scholar 

  35. Cool, D. R., Normant, E., Shen, F., Chen, H. C., Pannell, L., Zhang, Y., et al. (1997) Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell 88, 73–83.

    Article  PubMed  CAS  Google Scholar 

  36. Cool, D. R. and Loh, Y. P. (1998) Carboxypeptidase E is a sorting receptor for prohormones: binding and kinetic studies. Mol. Cell. Endocrinol. 139, 7–13.

    Article  PubMed  CAS  Google Scholar 

  37. Irminger, J. C., Verchere, C. B., Meyer, K., and Halban, P. A. (1997) Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E-deficient Cpefat/Cpefat mice. J. Biol. Chem. 272, 27532–27534.

    Article  PubMed  CAS  Google Scholar 

  38. Davidson, H. W., Peshavaria, M., and Hutton, J. C. (1987) Proteolytic conversion of proinsulin into insulin. Identification of a Ca2+-dependent acidic endopeptidase in isolated insulin-secretory granules. Biochem. J. 246, 279–286.

    PubMed  CAS  Google Scholar 

  39. Davidson, H.W., Rhodes, C.J., and Hutton, J.C. (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature 333, 93–96.

    Article  PubMed  CAS  Google Scholar 

  40. Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Isolation of the putative structural gene for the lysine-arginine — cleaving endopeptidase required for processing of yeast prepro-alpha- factor. Cell 37, 1075–1089.

    Article  PubMed  CAS  Google Scholar 

  41. Thomas, G., Thorne, B. A., Thomas, L., Allen, R. G., Hruby, D. E., Fuller, R., et al. (1988) Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 241, 226–230.

    Article  PubMed  CAS  Google Scholar 

  42. Fuller, R. S., Brake, A., and Thorner, J. (1989) Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. Natl. Acad. Sci. U S A 86, 1434–1438.

    Article  PubMed  CAS  Google Scholar 

  43. Smeekens, S. P. and Steiner, D. F. (1990) Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem. 265, 2997–3000.

    PubMed  CAS  Google Scholar 

  44. Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J., and Steiner, D. F. (1991) Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc. Natl. Acad. Sci. U S A 88, 340–344.

    Article  PubMed  CAS  Google Scholar 

  45. Seidah, N. G., Marcinkiewicz, M., Benjannet, S., Gaspar, L., Beaubien, G., Mattei, M. G., et al. (1991) Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol. Endocrinol. 5, 111–122.

    Article  PubMed  CAS  Google Scholar 

  46. Thomas, L., Leduc, R., Thorne, B. A., Smeekens, S. P., Steiner, D. F., and Thomas, G. (1991) Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing enzymes. Proc. Natl. Acad. Sci. U S A 88, 5297–5301.

    Article  PubMed  CAS  Google Scholar 

  47. Bailyes, E. M., Shennan, K. I., Seal, A. J., Smeekens, S. P., Steiner, D. F., Hutton J. C., et al. (1992) A member of the eukaryotic subtilisin family (PC3) has the enzymic properties of the type 1 proinsulin-converting endopeptidase. Biochem. J. 285, 391–394.

    PubMed  CAS  Google Scholar 

  48. Bennett, D. L., Bailyes, E. M., Nielsen, E., Guest, P. C., Rutherford, N. G., Arden, S. D., et al. (1992) Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J. Biol. Chem. 267, 15229–15236.

    PubMed  CAS  Google Scholar 

  49. Smeekens, S. P., Montag, A. G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M., et al. (1992) Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc. Natl. Acad. Sci. USA 89, 8822–8826.

    Article  PubMed  CAS  Google Scholar 

  50. Muller, L. and Lindberg, I. (1999) The cell biology of the prohormone convertases PC1 and PC2. Prog. Nucleic Acid Res. Mol. Biol. 63, 69–108.

    Article  PubMed  CAS  Google Scholar 

  51. Zhou, A. and Mains, R. E. (1994) Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J. Biol. Chem. 269, 17440–17447.

    PubMed  CAS  Google Scholar 

  52. Goodman, L. J. and Gorman, C. M. (1994) Autoproteolytic activation of the mouse prohormone convertase mPC1. Biochem. Biophys. Res. Commun. 201, 795–804.

    Article  PubMed  CAS  Google Scholar 

  53. Seidah, N. G. and Chretien, M. (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45–62.

    Article  PubMed  CAS  Google Scholar 

  54. Alarcon, C., Lincoln, B., and Rhodes, C. J. (1993) The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J. Biol. Chem. 268, 4276–4280.

    PubMed  CAS  Google Scholar 

  55. Guest, P. C., Rhodes, C. J., Hutton, J. C. (1989) Regulation of the biosynthesis of insulin-secretory-granule proteins. Co-ordinate translational control is exerted on some, but not all, granule matrix constituents. Biochem. J. 257, 431–437.

    PubMed  CAS  Google Scholar 

  56. Zhu, X., Orci, L., Carroll, R., Norrbom, C., Ravazzola, M., and Steiner, D. F. (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc. Natl. Acad. Sci. USA 99, 10299–10304.

    Article  PubMed  CAS  Google Scholar 

  57. Zhu, X., Zhou, A., Dey, A., Norrbom, C., Carroll, R., Zhang, C., et al. (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc. Natl. Acad. Sci. USA 99, 10293–10298.

    Article  PubMed  CAS  Google Scholar 

  58. Jackson, R. S., Creemers, J. W., Ohagi, S., Raffin-Sanson, M. L., Sanders, L., Montague C. T., et al. (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16, 303–306.

    Article  PubMed  CAS  Google Scholar 

  59. Guest, P. C., Arden, S. D., Bennett, D. L., Clark, A., Rutherford, N. G., and Hutton, J. C. (1992) The post-translational processing and intracellular sorting of PC2 in the islets of Langerhans. J. Biol. Chem. 267, 22401–22406.

    PubMed  CAS  Google Scholar 

  60. Lamango, N. S., Apletalina, E., Liu, J., and Lindberg, I. (1999) The proteolytic maturation of prohormone convertase 2 (PC2) is a pH- driven process. Arch. Biochem. Biophys. 362, 275–282.

    Article  PubMed  CAS  Google Scholar 

  61. Creemers, J. W., Usac, E. F., Bright, N. A., Van de Loo, J. W., Jansen E., Van de Ven, W. J., et al. (1996) Identification of a transferable sorting domain for the regulated pathway in the prohormone convertase PC2. J. Biol. Chem. 271, 25284–25291.

    Article  PubMed  CAS  Google Scholar 

  62. Hsi, K. L., Seidah N. G., De Serres, G., and Chretien, M. (1982) Isolation and NH2-terminal sequence of a novel porcine anterior pituitary polypeptide. Homology to proinsulin, secretin and Rous sarcoma virus transforming protein TVFV60. FEBS Lett. 147, 261–266.

    Article  PubMed  CAS  Google Scholar 

  63. Braks, J. A. and Martens, G. J. (1994) 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78, 263–273.

    Article  PubMed  CAS  Google Scholar 

  64. Shen, F. S., Seidah, N. G., and Lindberg, I. (1993) Biosynthesis of the prohormone convertase PC2 in Chinese hamster ovary cells and in rat insulinoma cells. J. Biol. Chem. 268, 24910–24915.

    PubMed  CAS  Google Scholar 

  65. Zhu, X. and Lindberg, I. (1995) 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J. Cell. Biol. 129, 1641–1650.

    Article  PubMed  CAS  Google Scholar 

  66. Westphal, C. H., Muller, L., Zhou, A., Zhu, X., Bonner-Weir, S., Schambelan, M., et al. (1999) The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing’s disease. Cell 96, 689–700.

    Article  PubMed  CAS  Google Scholar 

  67. Bailyes, E. M., Shennan, K.I., Usac, E. F., Arden, S. D., Guest, P. C., Docherty, K., et al. (1995) Differences between the catalytic properties of recombinant human PC2 and endogenous rat PC2. Biochem. J. 309, 587–594.

    PubMed  CAS  Google Scholar 

  68. Martens, G. J., Braks, J.A., Eib, D. W., Zhou, Y., and Lindberg, I. (1994) The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc. Natl. Acad. Sci. U S A 91, 5784–5787.

    Article  PubMed  CAS  Google Scholar 

  69. Zhu, X., Rouille, Y., Lamango, N. S., Steiner, D. F., and Lindberg, I. (1996) Internal cleavage of the inhibitory 7B2 carboxyl-terminal peptide by PC2: a potential mechanism for its inactivation. Proc. Natl. Acad. Sci. USA 93, 4919–4924.

    Article  PubMed  CAS  Google Scholar 

  70. Fortenberry, Y., Hwang, J. R., Apletalina, E. V., and Lindberg, I. (2002) Functional characterization of ProSAAS: similarities and differences with 7B2. J. Biol. Chem. 277, 5175–5186.

    Article  PubMed  CAS  Google Scholar 

  71. Berman, Y., Mzhavia, N., Polonskaia, A., and Devi, L. A. (2001) Impaired prohormone convertases in Cpe(fat)/Cpe(fat) mice. J. Biol. Chem. 276, 1466–1473.

    Article  PubMed  CAS  Google Scholar 

  72. Furuta, M., Carroll, R., Martin, S., Swift, H. H., Ravazzola, M., Orci, L., et al. (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273, 3431–3437.

    Article  PubMed  CAS  Google Scholar 

  73. Lipkind, G. and Steiner, D. F. (1999) Predicted structural alterations in proinsulin during its interactions with prohormone convertases. Biochemistry 38, 890–896.

    Article  PubMed  CAS  Google Scholar 

  74. Docherty, K., Carroll, R. J., and Steiner, D. F. (1982) Conversion of proinsulin to insulin: involvement of a 31,500 molecular weight thiol protease. Proc. Natl. Acad. Sci. USA 79, 4613–4617.

    Article  PubMed  CAS  Google Scholar 

  75. Rhodes, C. J., Lincoln, B., and Shoelson, S. E. (1992) Preferential cleavage of des-31,32-proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. Implication of a favored route for prohormone processing. J. Biol. Chem. 267, 22719–22727.

    PubMed  CAS  Google Scholar 

  76. Demaurex, N., Furuya, W., D’Souza, S., Bonifacino, J. S., and Grinstein, S. (1998) Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J. Biol. Chem. 273, 2044–2051.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard W. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, H.W. (Pro)Insulin processing. Cell Biochem Biophys 40 (Suppl 3), 143–157 (2004). https://doi.org/10.1385/CBB:40:3:143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:40:3:143

Index Entries

Navigation