Skip to main content
Log in

Tipping the apoptotic balance in Alzheimer's disease

The abortosis concept

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The mechanisms underlying the selective neuronal death in Alzheimer's disease are largely unresolved. Nonetheless, it is apparent that the environment of the diseased brain is extremely rich in proapoptotic stimuli and that these lead to an activation of the apoptotic death cascade. However, there is surprisingly little evidence for the completion of the death pathway indicating that the apoptotic death program is terminated by a mechanism termed abortosis. This review discusses the concept of abortosis in relation to Alzheimer's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salvesen, G. S. and Dixit, V. M. (1999) Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967.

    Article  PubMed  CAS  Google Scholar 

  2. LeBlanc, A. C. (2003) Natural cellular inhibitors of caspases. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 215–229.

    Article  PubMed  CAS  Google Scholar 

  3. Bancher, C., Lassmann, H., Breitschopf, H., and Jellinger, K. A. (1997) Mechanisms of cell death in Alzheimer's disease. J. Neural Transm. Suppl. 50, 141–152.

    PubMed  CAS  Google Scholar 

  4. Jellinger, K. A. and Bancher, C. (1998) Neuropathology of Alzheimer's disease: a critical update. J. Neural. Transm. Suppl. 54, 77–95.

    PubMed  CAS  Google Scholar 

  5. Slater, A. F., Stefan, C., Nobel, I., van den Dobbelsteen, D. J., and Orrenius, S. (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol. Lett. 82–83, 149–153.

    Article  PubMed  Google Scholar 

  6. Yankner, B. (1996) New clues to Alzheimer's disease: unraveling the roles of amyloid and tau. Nat. Med. 2, 850–852.

    Article  PubMed  CAS  Google Scholar 

  7. Vander Heiden, M. G., Chandel, N. S., Li, X. X., Schumacker, P. T., Colombini, M., and Thompson, C. B., (2000). Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl. Acad. Sci. USA 97, 4666–4671.

    Article  Google Scholar 

  8. Mark, R. J., Lovell, M. A., Markesbery, W. R., Uchida, K., and Mattson, M. P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J. Neurochem. 68, 255–264.

    Article  PubMed  CAS  Google Scholar 

  9. Sayre, L. M., Zelasko, D. A., Harris, P. L. R., Perry, G., Salomon, R. G., and Smith, M. A. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J. Neurochem. 68, 2092–2097.

    Article  PubMed  CAS  Google Scholar 

  10. Deng, G., Pike, C. J., and Cotman, C. W. (1996) Alzheimer-associated presenilin-2 confers increased sensitivity to apoptosis in PC12 cells. FEBS Lett. 397, 50–54.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson, A. J., Su, J. H., and Cotman, C. W. (1996). DNA damage and apoptosis in Alzheimer's disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J. Neurosci. 16, 1710–1719.

    PubMed  CAS  Google Scholar 

  12. Cotman, C. W. and Su, J. H. (1996) Mechanisms of neuronal death in Alzheimer's disease. Brain Pathol. 6, 493–506.

    PubMed  CAS  Google Scholar 

  13. Tsang, S. Y., Tam S. C., Bremner, I., and Burkitt, M. J. (1996) Research communication copper-1,10-phenanthroline induces internucleosomal DNA fragmentation in HepG2 cells, resulting from direct oxidation by the hydroxyl radical. Biochem. J. 317, 13–16.

    PubMed  CAS  Google Scholar 

  14. Su, J. H., Deng, G., and Cotman, C. W. (1997) Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer's disease brain. Brain Res. 774, 193–199.

    Article  PubMed  CAS  Google Scholar 

  15. Smith, M. A., Harris, P. L. R., Sayre, L. M., Beckman, J. S., and Perry, G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci. 17, 2653–2657.

    PubMed  CAS  Google Scholar 

  16. Stadelmann, C., Bruck, W., Bancher, C., Jellinger, K., and Lassmann, H. J. (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J. Neuropathol. Exp. Neurol. 57, 456–464.

    Article  PubMed  CAS  Google Scholar 

  17. Perry, G., Nunomura, A., Lucassen, P., Lassmann, H., and Smith, M. A. (1998) Apoptosis and Alzheimer's disease (Letter). Science 282, 1268–1269.

    Article  PubMed  CAS  Google Scholar 

  18. Perry, G., Nunomura, A., and Smith, M. A. (1998) A suicide note from Alzheimer disease neurons? (News and Views). Nat. Med. 4, 897–898.

    Article  PubMed  CAS  Google Scholar 

  19. Jellinger, K. A. and Stadelmann, C. (2001) Problems of cell death in neurodegeneration and Alzheimer's Disease. J. Alzheimer's Disease 3, 31–40.

    CAS  Google Scholar 

  20. Jellinger, K. A. (2001) Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5, 1–17.

    Article  PubMed  CAS  Google Scholar 

  21. Raina, A. K., Zhu, X., Rottkamp, C. A., Monteiro, M., Takeda, A., and Smith, M. A. (2000) Cyclin' toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res. 61, 128–133.

    Article  PubMed  CAS  Google Scholar 

  22. Raina, A. K., Hochman, A., Zhu, X., Rottkamp, C. A., Nunomura, A., Siedlak, S. L., Boux, H., Castellani, R. J., Perry, G., and Smith, M. A. (2001) Abortive apoptosis in Alzheimer's disease. Acta Neuropathol. 101, 305–310.

    PubMed  CAS  Google Scholar 

  23. Stennicke, H. R., Jurgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., Zhou, Q., Ellerby, H. M., Ellerby, L. M., Bredesen, D., Green, D. R., Reed, J. C., Froelich, C. J., and Salvesen, G. S. (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273, 27084–27090.

    Article  PubMed  CAS  Google Scholar 

  24. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  25. Trucco, C., Oliver, F. J., de Murcia, G., and Menissier-de Murcia, J. (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res. 26, 2644–2649.

    Article  PubMed  CAS  Google Scholar 

  26. Roth, K. A., Kuan, C.-Y., Haydar, T. F., D'Sa-Eipper, C., Shindler, K. S., Zheng, T. S., Kuida, K., Flavell, R. A., and Rakic, P. (2000) Epistatic and independent functions of caspase-3 and Bcl-XL in developmental programmed cell death. Proc. Natl. Acad. Sci. USA 97, 466–471.

    Article  PubMed  CAS  Google Scholar 

  27. Selznick, L. A., Holtzman, D. M., Han, B. H., Gokden, M., Srinivasan, A. N., Johnson, E. M. Jr., and Roth, K. A. (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 1020–1026.

    PubMed  CAS  Google Scholar 

  28. Stadelmann, C., Deckwerth, T. L., Srinivasan, A., Bancher, C., Brück, W., Jellinger, K., and Lassmann, H. (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Am. J. Pathol. 155, 1459–1466.

    PubMed  CAS  Google Scholar 

  29. Pike, C. J. (1999) Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer's disease. J. Neurochem. 72, 1552–1563.

    Article  PubMed  CAS  Google Scholar 

  30. Srinivasula, S. M., Hegde, R., Saleh, A. Datta, P., Shiozaki, E., Chai, J., Lee, R.-A., Robbins, P. D., Fernandes-Alnemri, T., Shi, Y., and Alnemri, E. S. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac-DIABLO regulated caspase activity and apoptosis. Nature 401, 112–116.

    Article  Google Scholar 

  31. Torp, R., Su, J. H., Deng, G., and Cotman, C. W. (1998) GADD45 is induced in Alzheimer's disease, and protects against apoptosis in vitro. Neurobiol. Dis. 5, 245–252.

    Article  PubMed  CAS  Google Scholar 

  32. Martins, L. M., Kottke, T. J., Kaufmann, S. H., and Earnshaw, W. C. (1998) Phosphorylated forms of activated caspases are present in cytosol from HL-60 cells during etoposide-induced apoptosis. Blood 92, 3042–3049.

    PubMed  CAS  Google Scholar 

  33. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N. (1996) Oxidative damage in Alzheimer's. Nature 382, 120–121.

    Article  PubMed  CAS  Google Scholar 

  34. Hampton, M. B., Fadeel, B., and Orrenius, S. (1998) Redox regulation of the caspases during apoptosis. Ann. NY Acad. Sci. 854, 328–335.

    Article  PubMed  CAS  Google Scholar 

  35. Allen, J. W., Eldadah, B. A., Huang, X., Knoblach, S. M., and Faden, A. I. (2001) Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. J. Neurosci. Res. 65, 45–53.

    Article  PubMed  CAS  Google Scholar 

  36. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Caspase-12 mediates endoplasmic-reticulumspecific apoptosis and cytotoxicity by amyloidbeta. Nature 403, 98–103.

    Article  PubMed  CAS  Google Scholar 

  37. LeBlanc, A., Liu, H., Goodyer, C., Bergeron, C., and Hammond, J. (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. J. Biol. Chem. 274, 23426–23436.

    Article  PubMed  CAS  Google Scholar 

  38. Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K., and Wisniewski, H. M. (1995) Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol. 89, 35–41.

    Article  PubMed  CAS  Google Scholar 

  39. Lucassen, P. J., Chung, W. C., Vermeulen, J. P., Van Lookeren Campagne, M., Van Dierendonck J. H., and Swaab, D. F. (1995) Microwave-enhanced in situ end-labeling of fragmented DNA: parametric studies in relation to postmortem delay and fixation of rat and human brian. J. Histochem. Cytochem. 43, 1163–1171.

    PubMed  CAS  Google Scholar 

  40. Lucassen, P. J., Chung, W. C., Kamphorst, W., and Swaab, D. F. (1997) DNA damage distribution in the human brain as shown by in situ end labeling; area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J. Neuropathol. Exp. Neurol. 56, 887–900.

    PubMed  CAS  Google Scholar 

  41. Sheng, J. G., Mrak, R. E., and Griffin, W. S. (1998) Progressive neuronal DNA damage associated with neurofibrillary tangle formation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 323–328.

    PubMed  CAS  Google Scholar 

  42. Sheng, J. G., Zhou, X. Q., Mrak, R. E., and Griffin, W. S. (1998) Progressive neuronal injury associated with amyloid plaque formation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 714–717.

    PubMed  CAS  Google Scholar 

  43. Sperandio, S., de Belle, I., and Bredesen, D. E. (2000) An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 97, 14376–14381.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, A.K., Zhu, X., Shimohama, S. et al. Tipping the apoptotic balance in Alzheimer's disease. Cell Biochem Biophys 39, 249–255 (2003). https://doi.org/10.1385/CBB:39:3:249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:3:249

Index Entries

Navigation