Abstract
There is substantial evidence indicating that moderate-intensity static magnetic fields (SMF) are capable of influencing a number of biological systems, particularly those whose function is closely linked to the properties of membrane channels. Most of the reported moderate SMF effects may be explained on the basis of alterations in membrane calcium ion flux. The mechanism suggested to explain these effects is based on the diamagnetic anisitropic properties of membrane phospholipids. It is proposed that reorientation of these molecules during moderate SMF exposure will result in the deformation of imbedded ion channels, thereby altering their activation kinetics. Channel inactivation would not be expected to be influenced by these fields because this mechanism is not located within the intramembraneous portion of the channel. Patch-clamp studies of calcium channels have provided support for this hypothesis, as well as demonstrating a temperature dependency that is understandable on the basis of the membrane thermotropic phase transition. Additional studies have demonstrated that sodium channels are similarly affected by SMFs, although to a lesser degree. These findings support the view that moderate SMF effects on biological membranes represent a general phenomenon, with some channels being more susceptible than others to membrane deformation.
This is a preview of subscription content, access via your institution.
References
Denegre, J. M., Valles, J. M., Jr., Lin, K., Jordan, W. B., and Mowry, K. L. (1998) Cleavage planes in frog eggs altered by strong magnetic fields. Proc. Natl. Acad. Sci. USA 95, 14729–14732.
Kale, P. G. and Baum, J. W. (1979) Genetic effects of strong magnetic fields in Drosophila melanogaster; homogeneous fields ranging from 13,000 to 37,000 gauss. Environ. Mutagen. 1, 371–374.
Beischer, D. E. and Knepton, J. C. The electroencephalogram of the squirrel monkey (Saimiri sciureus) in a very high magnetic field, in NAMI Rep. 972. Naval Aerospace Medical Institute, Pensacola, FL, 1966.
Thach, J. S. A behavioral effect of intense dc electromagnetic fields, in Use of Nonhuman Primates in Drug Evaluation (Vagthorg, H., ed.). Univ. of Texas Press, Austin, pp. 347–356, 1968.
Barnothy, J. M., Barnothy, M. F. and Boszormenyi-Nagy, I. (1956) Influence of a magnetic field upon the leukocytes of the mouse. Nature (London) 181, 1785–1786.
Eiselein, B. S., Boutell, H. M., and Biggs, W. (1961) Biological effects of magnetic fields— negative results. Aerosp. Med. 32, 383–386.
Young, W. and Gofman, J. W. Magnetic fields, vagal inhibition and acetylcholinesterase activity, in UCRL Rep. 12389. Lawrence Livermore Laboratory, Livermore, CA, 1965.
Gaffey, C. T. and Tenforde, T. S. (1981). Alterations in the rat electrocardiogram induced by stationary magnetic fields. Biolectromagnetics 2, 357–370.
Nahas, G. G., Boccalon, H., Berryer, P., and Wagner, B. (1975) Effects in rodents of a one-month exposure to magnetic fields (200–1200 Gauss). Aviat. Space Environ. Med. 46, 1161–1163.
Strand, J. A., Abernethy, C. S., Skalski, J. R., and Genoway, R. G. (1983) Effects of magnetic field exposure on fertilization success in rainbow trout, Salmo gairdneri. Bioelectromagnetics 4, 295–301.
Brewer, H. B. (1979) Some preliminary studies on the effects of a static magnetic field on the life cycle of Lebistes reticulates (guppy). Biophys. J. 28, 305–314.
Mild, K. H., Sandstrom, M., and Lovtrup, S. (1981) Development of Xenopus embryos in a static magnetic field. Bioelectromagnetics 2, 199–201.
Kholodov, Y. A. Influence of magnetic fields on biological objects. NTIS Rep. JPRS 63038. Natl. Tech. Info. Serv., Springfield, VA, 1974.
Klimovskaya, L. D. and Smirnova, N. P. (1976) Changes in brain evoked potentials under the influence of a permanent magnet field. Bull. Exp. Biol. Med. 82, 1125–1129.
Rosen, A. D. and Lubowsky, J. (1987) Magnetic field influence on central nervous system function. Exp. Neurol. 95, 679–687.
Nakagawa, M. and Matsuda, Y. (1988) A strong static magnetic field alters operant responding in rats. Bioelectromagnetics 9, 25–37.
Hong, C., Huestis, P., Thompson, R., and Yu, J. (1988) Learning ability of young rats in unaffected by repeated exposure to a static electromagnetic field in early life. Bioelectromagnetics 9, 269–273.
Azanza, M. J. and Del Moral, A. (1984) Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog. Neurobiol. 44, 517–601.
Roberts, A. M. (1970) Motion of Paramecium in static electric and magnetic fields. J. Theor. Biol. 27, 97–106.
Rosen, M. S. and Rosen, A. D. (1990) Magnetic field influence on Paramecium motility. Life Sci. 46, 1509–1515.
Eckert, R. (1972) Bioelectric control of ciliary activity. Science 176, 473–481.
Browning, J. L., Nelson, D. D., and Hasma, H. G. (1976) Ca2+ influx across the excitable membrane of behavioral mutants of Paramecium. Nature 259, 491–494.
Rosen, A. D. and Vastola, E. F. (1966) Unit signs of visual cortex modulation by the lateral geniculate body. EEG Clin. Neurophys. 20, 38–43.
Rosen, A. D. and Lubowsky, J. (1990) Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp. Neurol. 108, 261–265.
Wikswo, J. P. and Barach, J. P. (1980) An estimate of the steady magnetic field strength required to influence nerve conduction. IEEE Trans. Biomed. Eng. 27, 722–724.
Katz, B. and Miledi, R. (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B. 161, 496–503.
Rosen, A. D. (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am. J. Physiol. (Cell Physiol. 31) 262, C1418-C1422.
Rosen, A. D. (1992) Membrane response to static magnetic fields: Effect of exposure duration. Biochim. Biophys. Acta 1148, 317–320.
Rosen, A. D. (1994) Threshold and limits of magnetic field action at the presynaptic membrane. Biochim. Biophys. Acta 1193, 62–66.
Rosen, A. D. (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta 1282, 149–155.
Matteson, D. R. and Armstrong, C. M. (1986) Properties of two types of calcium channels in clonal pituitary cells. J. Gen. Physiol. 87, 161–182.
Matteson, D. R. and Armstrong, C. M. (1984) Na and Ca channels in a transformed line of anterior pituitary cells. J. Gen. Physiol. 83, 371–394.
Rosen, A. D. (2003) Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics, in press.
Worcester, D. L. (1978) Structural origins of diamagnetic anisotropy in proteins. Proc. Natl. Acad. Sci. USA 75, 5475–5477.
Vassilev, P. M., Dronzine, R. T., Vassileva, M. P., and Georgiev, G. A. (1982) Parallel arrays of microtubules formed in electric and magnetic fields. Biosci. Rep. 2, 1025–1029.
Bras, W., Diakun, G. P., Diaz, J. F., Maret, G., Kramer, H., Bordas, J., and Medrano, F. J. (1998) The susceptibility of pure tubulin to high magnetic fields: A magnetic birefringence and X-ray fiber diffraction study. Biophys. J. 74, 1509–1521.
Valles, J. M., Jr. (2002) Model of magnetic field-induced mitotic apparatus reorientation in frog eggs. Biophys. J. 82, 1260–1265.
Maret, G. and Dransfeld, K. (1977) Macromolecules and membranes in high magnetic fields. Physica 86B, 1077–1083.
Hong, F. T., Mauzerall, D., and Mauro, A. (1971) Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field. Proc. Natl. Acad. Sci. USA 68, 1283–1285.
Geacintov, N. E., Van Norstrand, F., Pope, M., and Tinkel, J. B. (1971) Magnetic field effect on the chlorophyll fluorescence in Chlorella. Biochim. Biophys. Acta 226, 486–491.
Boroske, E., and Helfrich, W. (1978) Magnetic anisotropy of egg lecithin membranes. Biophys. J. 24, 863–868.
Speyer, J. B., Sripada, P. K., Das Gupta, S. K., and Shipley, G. G. (1987) Magnetic orientation of sphingomyelin-lecithin bilayers. Biophys. J. 51, 687–691.
Tenforde, T. S. (1988) Magnetic deformation of phospholipid bilayers: Effects of liposome shape and solute permeability at prephase transition temperature. J. Theor. Biol. 133, 385–396.
Carraway, K. L. and Carraway, C. A. C. (1989) Membrane-cytoskeleton interactions in animal cells. Biochim. Biophys. Acta 988, 147–171.
Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S. and Numa, S. (1989) Primary structure and functional expression in the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233.
Perez-Reyes, E., Wei, X., Castellano, A., and Birnbaumer, L. (1990) Molecular diversity of L-type calcium channels. J. Biol. Chem. 265, 20430–20436.
Soong, T. W., Stea, A., Hodson, C. D., Dubel, S. J., Vincent, S. R., and Snutch, T. P. (1993) Structure and functional expression in a member of the low voltage-activated calcium channel family. Science 260, 1133–1136.
Obejero-Paz, C. A., Jones, S. W., and Scarpa, A. (1991) Calcium currents in the A7r5 smooth muscle-derived cell line. Increase in current and selective removal of voltage-dependent inactivation by intracellular trypsin. J. Gen. Physiol. 98, 1127–1140.
Armstrong, C. M. and Bezanilla, F. (1977) Inactivation of the sodium channel. II. Gating current experiments. J. Gen Physiol. 70, 567–590.
Yue, D. T., Backx, P. H., and Imredy, J. P. (1990) Calcium-sensitive inactivation in the gating of single calcium channels. Science 250, 1735–1738.
Welling, A., Bosse, E., Caualie, A., Bottlender, R., Ludwig, A., Nastainczyk, W., Flockerzi, V., and Hoffmann, F. (1993) Stable co-expression of calcium channel α1, β β, and α1/δ subunits in a somatic cell line. J. Physiol. 471, 749–765.
McElhaney, R. N. (1986) Differential scanning calorimetric studies of lipid-protein interaction in model membrane systems. Biochim. Biophys. Acta 864, 361–421.
Unwin, N. (1995) Acetylcholine receptor-channel imaged in the open state. Nature 373, 37–43.
Wilson, G. G. and Karlin, A. (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–1281.
Steiner, U. E. and Ulrich, T. (1989) Magnetic field effects in chemical reactions and related phenomena. Chem. Rev. 89, 51–147.
Tenforde, T. S. (1985) Mechanisms for the biological effects of magnetic fields. In Biological Effects and Dosimetry of Static Magnetic Fields and ELF Electromagnetic Fields. (Grandolfo, M., Michaelson, S. M., and Rindi, A. V., eds.). Plenum Press, New York pp. 71–92.
De Certaines, J. D. (1992) Molecular and cellular responses to orientation effects in static and homogeneous ultra high magnetic fields. Ann. NY Acad. Sci. 649, 35–43.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rosen, A.D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39, 163–173 (2003). https://doi.org/10.1385/CBB:39:2:163
Issue Date:
DOI: https://doi.org/10.1385/CBB:39:2:163