Skip to main content
Log in

Control of membrane structure and organization through chemical recognition

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cell membranes consist of a fluidic medium of lipids and proteins that organize into specific submicron scale structures for signaling and molecular trafficking processes. These organized molecular assemblies form as a result of the structure and chemistry of the membrane components as well as the interactions of those components with analytes from solution. Although considerable research has focused on the structure and chemistry of membrane components and their ability to form organized assemblies, less attention has been paid toward the influence that chemical recognition has upon membrane reorganization. This review focuses on the recognition and binding of metal ions, small molecules, polyelectrolytes, and proteins on model membrane systems to assess the effects of long- and short-range interactions up on the molecular organization of the membrane. Chemical recognition can induce dramatic changes on the membrane's phase transition temperature and the clustering or dispersion of membrane components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994) Molecular Biology of The Cell. Garland Publishing, New York.

    Google Scholar 

  2. Eichmann, K. (1993) Transmembrane signaling of T lymphocytes by ligand-induced receptor complex assembly. Angew. Chem., Int. Ed. Engl. 32, 54–63.

    Article  Google Scholar 

  3. Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M., and Dustin, M. L. (1999) The immunological synapse: A molecular machine controlling t cell activation. Science 285, 221–227.

    Article  PubMed  CAS  Google Scholar 

  4. Potter, T. A., Grebe, K., Freiberg, B., and Kupfer, A. (2001) Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl. Acad. Sci. USA 98, 12624–12629.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, D. A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, T-Y., Leventis R., and Silvius, J. R. (2000) Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: A model for molecular partitioning into “lipid rafts”. Biophys. J. 79, 919–933.

    PubMed  CAS  Google Scholar 

  7. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Mol. Cell Biol. 1, 31–39.

    CAS  Google Scholar 

  8. van der Goot, F. G. and Harder, T. (2001) Raft membrane domains: From a liquid-ordered membrane phase to a site of pathogen attack. Immunology 13, 89–97.

    Google Scholar 

  9. Dufréne, Y. F., Barger, W. R., Green, J-B. D., and Lee, G. U. (1997) Nanometer-scale surface properties of mixed phospholipid monolayers and bilayers. Langmuir 13, 4779.

    Article  Google Scholar 

  10. Krisovitch, S. M. and Regen, S. L. (1992) Nearest-neighbor recognition in phospholipid membranes: A molecular-level approach to the study of membrane suprastructure. J. Am. Chem. Soc. 114, 9828–9835.

    Article  CAS  Google Scholar 

  11. Hauser, H. (1991) Effect of inorganic cations on phase transitions. Chem. Phys. Lipids 57, 309–325.

    Article  PubMed  CAS  Google Scholar 

  12. Cevc, G. (1987) How Membrane chain melting properties are regulated by the polar surface of the lipid bilayer. Biochemistry 26, 6305–6310.

    Article  PubMed  CAS  Google Scholar 

  13. Hauser, H. and Shipley, G.G. (1983) Interactions of monovalent cations with phosphatidylserine bilayer membranes. Biochemistry 22, 2171–2178.

    Article  PubMed  CAS  Google Scholar 

  14. Hauser, H. and Shipley, G. G. (1981) Crystallization of phosphatidylserine bilayers induced by lithium. J. Biol. Chem. 256, 11377–11380.

    PubMed  CAS  Google Scholar 

  15. Hauser, H. and Shipley, G. G. (1984) Interactions of divalent cations with phosphatidylserine bilayer membranes. Biochemistry 23, 34–41.

    Article  PubMed  CAS  Google Scholar 

  16. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R. (1977) Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim. Biophys. Acta 465, 579–598.

    Article  PubMed  CAS  Google Scholar 

  17. Jacobson, K. and Papahadjopoulos, D. (1975) Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry 14, 152–161.

    Article  PubMed  CAS  Google Scholar 

  18. van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J., van Deenen, L. L. M., and de Gier, J. (1978) Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. Biochim. Biophys. Acta 512, 84–96.

    Article  PubMed  Google Scholar 

  19. Ohnishi, S. and Ito, T. (1974) Calcium-induced phase separation in phosphatidylserine-phosphatidylcholine membranes. Biochemistry 13, 881–887.

    Article  CAS  Google Scholar 

  20. Gadella, T. W. J. Jr., Moritz, A., Westerman, J., and Wirtz, K. W. A. (1990) Enzymatic synthesis of pyrene-labeled polyphoinositides and their behavior in organic solvents and phosphatidylcholine bilayers. Biochemistry 29, 3389–3395.

    Article  PubMed  CAS  Google Scholar 

  21. Haverstick, D. M. and Glaser, M. (1988) Visualization of domain formation in the inner and outer leaflets of a phospholipid bilayer. J. Cell Biol. 106, 1885–1892.

    Article  PubMed  CAS  Google Scholar 

  22. Shimomura, M. and Kunitake, T. (1982) Interaction of ions with the surface receptor of the azobenzene-containing bilayer membrane. Discrimination, transduction, and amplification of chemical signals. J. Am. Chem. Soc. 104, 1757–1759.

    Article  CAS  Google Scholar 

  23. Singh, A., Tsao, L-I., Markowitz, M., and Gaber, B. P. (1992) Metal ion induced phase changes in self-assembled membranes. Langmuir 8, 1570–1577.

    Article  CAS  Google Scholar 

  24. Galla, H-J. and Hartmann, W. (1980) Excimerforming lipids in membrane research. Chem. Phys. Lipids 27, 199–219.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, S. H.-w. and McConnell, H. M. (1975) Phase separations in phospholipid membranes. Biochemistry 14, 847–854.

    Article  CAS  Google Scholar 

  26. Hresko, R. C., Sugár, I. P., Barenholz, Y., and Thompson, T. E. (1986) Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: Fluorescence phase and modulation study. Biochemistry 25, 3813–3823.

    Article  PubMed  CAS  Google Scholar 

  27. Sasaki, D. Y., Shnek, D. R., Pack, D. W., and Arnold, F. H. (1995) Metal-induced dispersion of lipid aggregates: A simple, selective, and sensitive fluorescent metal ion sensor. Angew. Chem., Int. Ed. Engl. 34, 905–907.

    Article  CAS  Google Scholar 

  28. Sasaki, D. Y. and Padilla, B. E. (1998) Dithioamide metal ion receptors on fluorescent lipid bilayers for the selective optical detection of mercuric ion. Chem. Comm. 15, 1581–1582.

    Article  Google Scholar 

  29. Sasaki, D. Y., Waggoner, T. A., Last, J. A., and Alam, T. M. (2002) Crown ether functionalized lipid membranes: Lead ion recognition and molecular reorganization. Langmuir 18, 3714–3721.

    Article  CAS  Google Scholar 

  30. Last, J. A., Waggoner, T. A., and Sasaki, D. Y. (2001) Lipid membrane reorganization induced by chemical recognition. Biophys. J. 81, 2737–2742.

    PubMed  CAS  Google Scholar 

  31. Martell, A. E. and Smith, P. M., Critical Stability Constants. Plenum Press, New York, 1974.

    Google Scholar 

  32. Marchi-Artzner, V., Jullien, L., Gulik-Krzywicki, T., and Lehn, J-M. (1997) Molecular recognition induced aggregation and fusion between vesicles containing lipids bearing complementary hydrogen bonding head-groups. Chem. Comm. 1, 117–118.

    Article  Google Scholar 

  33. Jacquemain, D., Wolf, S. G., Leveiller, F., Deutsch, M., Kjaer, K., Als-Nielsen, J., Lahav, M., and Leiserowitz, L. (1992) Two-dimensional crystallography of amphiphilic molecules at the air-water interface. Angew. Chem. Int. Ed. Engl. 31, 130–152.

    Article  Google Scholar 

  34. Ahlers, M., Ringsdorf H, Rosemeyer, H, Seela F. (1990) Orientation, recognition, and photoreaction of nucleolipids in model membranes. Coll. Polym. Sci. 268, 132–142.

    Article  CAS  Google Scholar 

  35. Berti, D., Franchi, L., Baglioni, P., Luisi, P. L. (1997) Molecular recognition in monolayers. Complementary base pairing in dioleoylphosphatidyl derivatives of adenosine, uridine, and cytidine. Langmuir 13, 3438–3444.

    Article  CAS  Google Scholar 

  36. Marchi-Artzner, V., Artzner, F., Karthaus, O., Shimomura, M., Ariga, K., Kunitake, T., and Lehn, J-M. (1998) Molecular recognition between 2,4,6-triaminopyrimidine lipid monolayers and complementary barbituric molecules at the air/water interface: Effects of hydrophilic spacer, ionic strength, and pH. Langmuir 14, 5164–5171.

    Article  CAS  Google Scholar 

  37. Ikeura, Y., Kurihara, K., and Kunitake, T. (1991) Molecular recognition at the air-water interface. Specific binding of nitrogen aromatics and amino acids by monolayers of long-chain derivatives of Kemp's acid. J. Am. Chem. Soc. 113, 7342–7350.

    Article  CAS  Google Scholar 

  38. Cha, X., Ariga, K., and Kunitake, T. (1996) Molecular recognition of aqueous dipeptides at multiple hydrogen-bonding sites of mixed peptide monolayers. J. Am. Chem. Soc. 118, 9545–9551.

    Article  CAS  Google Scholar 

  39. Ariga, K. and Kunitake, T. (1998) Molecular recognition at air-water and related interfaces: Complementary hydrogen bonding and multisite interaction. Acc. Chem. Res. 31, 371–378.

    Article  CAS  Google Scholar 

  40. Sasaki, D. Y., Kurihara, K., and Kunitake, T. (1991) Specific, multiple-point binding of ATP and AMP to a guanidinium-functionalized monolayer. J. Am. Chem. Soc. 113, 9685–9686.

    Article  CAS  Google Scholar 

  41. Xie, A. F. and Granick, S. (2002) Phospholipid membranes as substrates for polymer adsorption. Nat. Materials 1, 129–133.

    Article  CAS  Google Scholar 

  42. Denisov, G., Wanaski, S., Luan, P., Glaser, M., and McLaughlin, S. (1998) Binding of basic peptides to membrane produces lateral domains enriched in the acidic Lipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate: An electrostatic model and experimental results. Biophys. J. 74, 731–744.

    PubMed  CAS  Google Scholar 

  43. Wang, J., Gambhir, A., Hangyás-Mihályné, G., Murray, D., Golebiewska, U., and McLaughlin, S. (2002) Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J. Biol. Chem. 277, 34401–34412.

    Article  PubMed  CAS  Google Scholar 

  44. Heimburg, T., Angerstein, B., and Marsh, D., (1999) Binding of peripheral proteins to mixed lipid membranes: Effect of lipid demixing upon binding. Biophys. J. 76, 2575–2586.

    PubMed  CAS  Google Scholar 

  45. Buser, C. A., Kim, J., McLaughlin, S., and Peitzsch, R. M. (1995) Does the binding of clusters of basic residues to acidic lipids induce domain formation in membranes? Mol. Membr. Biol. 12, 69–75.

    Article  PubMed  CAS  Google Scholar 

  46. May, S., Harries, D., and Ben-Shaul, A. (2000) Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. Biophys. J. 79, 1747–1760.

    Article  PubMed  CAS  Google Scholar 

  47. Devaux, P. F. and Seigneuret, M. (1985) Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim. Biophys. Acta 822, 63–125.

    PubMed  CAS  Google Scholar 

  48. Verger, R. and Pattus, F. (1982) Lipid-protein interactions in monolayers. Chem. Phys. Lipids 30, 189–227.

    Article  CAS  Google Scholar 

  49. Heckl, W. M., Zaba, B. N., and Möhwald, H. (1987) Interactions of cytochrome b5 and c with phospholipid monolayers. Biochim. Biophys. Acta 903, 166–176.

    Article  PubMed  CAS  Google Scholar 

  50. Pack, D. W., Ng, K., Maloney, K. M., and Arnold, F. H. (1996) Ligand-induced reorganization and assembly in synthetic lipid membranes. Supramolecular Sci. 4, 3–10.

    Article  Google Scholar 

  51. Bakowsky, U., Rettig, W., Bendas, G., Vogel, J., Bakowsky, H., Harnagea, C., and Rothe, U. (2000) Characterization of the interactions between various hexadecylmannoside-phospholipid model membranes with the lectin concanavalin A. Phys. Chem. Chem. Phys. 2, 4609–4614.

    Article  CAS  Google Scholar 

  52. Lebeau, L., Schultz, P., Célia, H., Mésini, P., Nuss, S., Klinger, C., et al. Specifically Designed Lipid Assemblies as Tools for Two-Dimensional Crystallization of Soluble Biological Macromolecules. CRC Press, Boca Raton, FL., 1996, pp. 153–186.

    Google Scholar 

  53. Birrell, G. B. and Griffith, O. H. (1976) Cytochrome c induced lateral phase separation in a diphosphatidylglycerol-steroid spin-label model membrane. Biochemistry 15, 2925–2929.

    Article  PubMed  CAS  Google Scholar 

  54. Hori, Y., Demura, M., Iwadate, M., Ulrich, A. S., Niidome, T., Aoyagi, H., and Asakura, T. (2001) Interaction of mastoparan with membranes studied by 1H-NMR spectroscopy in detergent micelles and by solid-state 2H-NMR and 15N-NMR spectroscopy in oriented lipid bilayers. Eur. J. Biochem. 268, 302–309.

    Article  PubMed  CAS  Google Scholar 

  55. Wiener, J. R., Pal, R., Barenholz, Y., and Wagner, R. R. (1985) Effect of the vesicular stomatitis virus matrix protein on the lateral organization of lipid bilayers containing phosphatidylglycerol: Use of fluorescent phospholipid analogues. Biochemistry 24, 7651–7658.

    Article  PubMed  CAS  Google Scholar 

  56. Song, X., Nolan, J., and Swanson, B. I. (1998) Optical biosensor based on fluorescence resonance energy transfer: Ultrasensitive and specific detection of protein toxins. J. Am. Chem. Soc. 120, 11514–11515.

    Article  CAS  Google Scholar 

  57. Song, X., Nolan, J., and Swanson, B. I. (1998) Optical signal transduction triggered by protein-ligand binding: Detection of toxins using multivalent binding. J. Am. Chem. Soc. 120, 4873–4874.

    Article  CAS  Google Scholar 

  58. Spevak, W., Nagy, J. O., Charych, D. H., Schaefer, M. E., Gilbert, J. H., Bednarski, M. D. (1993) Polymerized liposomes containing c-glycosides of sialic acid: Potent inhibitors of influenza virus in vitro infectivity. J. Am. Chem. Soc. 115, 1146–1147.

    Article  CAS  Google Scholar 

  59. Bondurant, B., Last, J. A., Waggoner, T. A., Slade, A., and Sasaki, D. Y. (2003) Optical and scanning probe analysis of glycolipid reorganization upon concanavalin a binding to mannose-coated lipid bilayers. Langmuir 19, 1829–1837.

    Article  CAS  Google Scholar 

  60. Barton, P., Hunter, C. A., Potter, T. J., Webb, S. J., and Williams, N. H. (2002) Transmembrane signalling. Angew. Chem. Int. Ed. 41, 3878–3881.

    Article  CAS  Google Scholar 

  61. Fukuda, K., Sasaki, Y., Ariga, K., and Kikuchi, I. (2001) Dynamic behavior of a transmembrane molecular switch as an artificial cell-surface receptor. J. Mol. Cat. B: Enzymatic 11, 971–976.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl Y. Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, D.Y. Control of membrane structure and organization through chemical recognition. Cell Biochem Biophys 39, 145–161 (2003). https://doi.org/10.1385/CBB:39:2:145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:2:145

Index Entries

Navigation