Skip to main content
Log in

Modulation of ion channel function by P2Y receptors

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

P2Y receptors are classified as P2 purinergic receptors that belong to the superfamily of G-protein coupled receptors. They are distinguishable from P1 (adenosine) receptors in that they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species. Eight functional subtypes have been characterized. Nucleotide binding produces activation of specific G-proteins that in turn regulate the function of membrane bound enzymes including phospholipase C and adenylyl cyclase. Certain P2Y receptor subtypes possess a PDZ domain located at the end of the C-terminal region of the receptor. PDZ domains have been established as sites for protein-protein interaction, thus providing a possible mechanism for receptor modulation of membrane protein function independent of G-protein activation. In this review we discuss recent findings that suggest that P2Y receptors can modulate the function of ion channels through multiple protein-protein interactions at the plasma membrane that do not directly involve G-protein activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbracchio, M. P. and Burnstock, G. (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol. Ther. 64, 445–475.

    PubMed  CAS  Google Scholar 

  2. Fredholm, B. B., Abbracchio, M. P., Burnstock, G., et al. (1994) Nomenclature and classification of purinoceptors. Pharmacol. Rev. 46, 143–156.

    PubMed  CAS  Google Scholar 

  3. Boarder, M. R. and Hourani, S. M. (1998) The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol. Sci. 19, 99–107.

    PubMed  CAS  Google Scholar 

  4. Boarder, M. R., Weisman, G. A., Turner, J. T., and Wilkinson, G. F. (1995) G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol. Sci. 16, 133–139.

    PubMed  CAS  Google Scholar 

  5. Dubyak, G. R. and el-Moatassim, C. (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 265, C577-C606.

    PubMed  CAS  Google Scholar 

  6. Ralevic, V. and Burnstock, G. (1998) Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492.

    PubMed  CAS  Google Scholar 

  7. Nicholas, R. A. (2001) Identification of the P2Y(12) receptor: a novel member of the P2Y family of receptors activated by extracellular nucleotides. Mol. Pharmacol. 60, 416–420.

    PubMed  CAS  Google Scholar 

  8. Chambers, J. K., Macdonald, L. E., Sarau, H. M., et al. (2000) A G protein-coupled receptor for UDP-glucose. J. Biol. Chem. 275, 10767–10771.

    PubMed  CAS  Google Scholar 

  9. Sak, K. and Webb, T. E. (2002) A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch. Biochem. Biophys. 397, 131–136.

    PubMed  CAS  Google Scholar 

  10. von Kugelgen, I. and Wetter, A. (2000) Molecular pharmacology of P2Y-receptors. Naunyn Schmiedebergs Arch. Pharmacol. 362, 310–323.

    Google Scholar 

  11. Communi, D., Gonzalez, N. S., Detheux, M., et al. (2001) Identification of a novel human ADP receptor coupled to G(i). J. Biol. Chem. 276, 41479–41485.

    PubMed  CAS  Google Scholar 

  12. Bogdanov, Y. D., Dale, L., King, B. F., Whittock, N., and Burnstock, G. (1997) Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J. Biol. Chem. 272, 12583–12590.

    PubMed  CAS  Google Scholar 

  13. Webb, T. E., Henderson, D., King, B. F., et al. (1996) A novel G protein-coupled P2 purinoceptor (P2Y3) activated preferentially by nucleoside diphosphates. Mol. Pharmacol. 50, 258–265.

    PubMed  CAS  Google Scholar 

  14. Herold, C. L., Li, Q., Schachter, J. B., Harden, T. K., and Nicholas, R. A. (1997) Lack of nucleotide-promoted second messenger signaling responses in 1321N1 cells expressing the proposed P2Y receptor, p2y7. Biochem. Biophys. Res. Commun. 235, 717–721.

    PubMed  CAS  Google Scholar 

  15. Li, Q., Schachter, J. B., Harden, T. K., and Nicholas, R. A. (1997) The 6H1 orphan receptor, claimed to be the p2y5 receptor, does not mediate nucleotide-promoted second messenger responses. Biochem. Biophys. Res. Commun. 236, 455–460.

    PubMed  CAS  Google Scholar 

  16. Janssens, R., Boeynaems, J. M., Godart, M., and Communi, D. (1997) Cloning of a human hepta-helical receptor closely related to the P2Y5 receptor. Biochem. Biophys. Res. Commun. 236, 106–112.

    PubMed  CAS  Google Scholar 

  17. Jiang, Q., Guo, D., Lee, B. X., et al. (1997) A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol. Pharmacol. 52, 499–507.

    PubMed  CAS  Google Scholar 

  18. Van Rhee, A. M., Fischer, B., Van Galen, P. J., and Jacobson, K. A. (1995) Modelling the P2Y purinoceptor using rhodopsin as template. Drug Des. Discov. 13, 133–154.

    PubMed  Google Scholar 

  19. Moro, S., Guo, D., Camaioni, E., Boyer, J. L., Harden, T. K., and Jacobson, K. A. (1998) Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. J. Med. Chem. 41, 1456–1466.

    PubMed  CAS  Google Scholar 

  20. Moro, S., Hoffmann, C., and Jacobson, K. A. (1999) Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modeling study of the human P2Y1 receptor. Biochemistry 38, 3498–3507.

    PubMed  CAS  Google Scholar 

  21. Hoffmann, C., Moro, S., Nicholas, R. A., Harden, T. K., and Jacobson, K. A. (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J. Biol. Chem. 274, 14639–14647.

    PubMed  CAS  Google Scholar 

  22. Abbracchio, M. P., Boeynaems, J. M., Barnard, E. A., et al. (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y(14) receptor) adds diversity to the P2Y receptor family. Trends Pharmacol. Sci. 24, 52–55.

    PubMed  CAS  Google Scholar 

  23. Schachter, J. B., Li, Q., Boyer, J. L., Nicholas, R. A., and Harden, T. K. (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br. J. Pharmacol. 118, 167–173.

    PubMed  CAS  Google Scholar 

  24. Parr, C. E., Sullivan, D. M., Paradiso, A. M., et al. (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc. Natl. Acad. Sci. USA. 91, 13067.

    PubMed  CAS  Google Scholar 

  25. Communi, D., Pirotton, S., Parmentier, M., and Boeynaems, J. M. (1995) Cloning and functional expression of a human uridine nucleotide receptor. J. Biol. Chem. 270, 30849–30852.

    PubMed  CAS  Google Scholar 

  26. Lazarowski, E. R., Rochelle, L. G., O’Neal, W. K., et al. (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J. Pharmacol. Exp. Ther. 297, 43–49.

    PubMed  CAS  Google Scholar 

  27. Communi, D., Govaerts, C., Parmentier, M., and Boeynaems, J. M. (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J. Biol. Chem. 272, 31969–31973.

    PubMed  CAS  Google Scholar 

  28. van der Weyden, L., Adams, D. J., Luttrell, B. M., Conigrave, A. D., and Morris, M. B. (2000) Pharmacological characterisation of the P2Y11 receptor in stably transfected haematological cell lines. Mol. Cell. Biochem. 213, 75–81.

    PubMed  Google Scholar 

  29. Hourani, S. M. and Hall, D. A. (1994) Receptors for ADP on human blood platelets. Trends Pharmacol. Sci. 15, 103–108.

    PubMed  CAS  Google Scholar 

  30. Gachet, C., Hechler, B., Leon, C., et al. (1997) Activation of ADP receptors and platelet function. Thromb. Haemost. 78, 271–275.

    PubMed  CAS  Google Scholar 

  31. Savi, P., Beauverger, P., Labouret, C., et al. (1998) Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett. 422, 291–295.

    PubMed  CAS  Google Scholar 

  32. Hollopeter, G., Jantzen, H. M., Vincent, D., et al. (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409, 202–207.

    PubMed  CAS  Google Scholar 

  33. Daniel, J. L., Dangelmaier, C., Jin, J., Ashby, B., Smith, J. B., and Kunapuli, S. P. (1998) Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J. Biol. Chem. 273, 2024–2029.

    PubMed  CAS  Google Scholar 

  34. Hechler, B., Leon, C., Vial, C., et al. (1998) The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood 92, 152–159.

    PubMed  CAS  Google Scholar 

  35. Neary, J. T., Kang, Y., Bu, Y., Yu, E., Akong, K., and Peters, C. M. (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J. Neurosci. 19, 4211–4220.

    PubMed  CAS  Google Scholar 

  36. Lenz, G., Gottfried, C., Luo, Z., et al. (2000) P(2Y) purinoceptor subtypes recruit different MEK activators in astrocytes. Br. J. Pharmacol. 129, 927–936.

    PubMed  CAS  Google Scholar 

  37. Patel, V., Brown, C., Goodwin, A., Wilkie, N., and Boarder, M. R. (1996) Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production. Biochem. J. 320(Pt 1), 221–226.

    PubMed  CAS  Google Scholar 

  38. Albert, J. L., Boyle, J. P., Roberts, J. A., Challiss, R. A., Gubby, S. E., and Boarder, M. R. (1997) Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase. Br. J. Pharmacol. 122, 935–941.

    PubMed  CAS  Google Scholar 

  39. Harper, S., Webb, T. E., Charlton, S. J., Ng, L. L., and Boarder, M. R. (1998) Evidence that P2Y4 nucleotide receptors are involved in the regulation of rat aortic smooth muscle cells by UTP and ATP. Br. J. Pharmacol. 124, 703–710.

    PubMed  CAS  Google Scholar 

  40. Huwiler, A., and Pfeilschifter, J. (1994) Stimulation by extracellular ATP and UTP of the mitogen-activated protein kinase cascade and proliferation of rat renal mesangial cells. Br. J. Pharmacol. 113, 1455–1463.

    PubMed  CAS  Google Scholar 

  41. Gao, Z., Chen, T., Weber, M. J., and Linden, J. (1999) A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. Cross-talk between cyclic AMP and protein kinase c pathways. J. Biol. Chem. 274, 5972–5980.

    PubMed  CAS  Google Scholar 

  42. Graham, A., McLees, A., Kennedy, C., Gould, G. W., and Plevin, R. (1996) Stimulation by the nucleotides, ATP and UTP of mitogen-activated protein kinase in EAhy 926 endothelial cells. Br. J. Pharmacol. 117, 1341–1347.

    PubMed  CAS  Google Scholar 

  43. Soltoff, S. P., Avraham, H., Avraham, S., and Cantley, L. C. (1998) Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J. Biol. Chem. 273, 2653–2660.

    PubMed  CAS  Google Scholar 

  44. Sellers, L. A., Simon, J., Lundahl, T. S., Cousens, D. J., Humphrey, P. P., and Barnard, E. A. (2001) Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J. Biol. Chem. 276, 16379–16390.

    PubMed  CAS  Google Scholar 

  45. Neary, J. T. and Zhu, Q. (1994) Signaling by ATP receptors in astrocytes. Neuroreport 5, 1617–1620.

    PubMed  CAS  Google Scholar 

  46. Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L. (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–180.

    PubMed  CAS  Google Scholar 

  47. Seger, R. and Krebs, E. G. (1995) The MAPK signaling cascade. FASEB J. 9, 726–735.

    PubMed  CAS  Google Scholar 

  48. Neary, J. T. (2000) Trophic actions of extracellular ATP: gene expression profiling by DNA array analysis. J. Auton. Nerv. Syst. 81, 200–204.

    PubMed  CAS  Google Scholar 

  49. Brambilla, R., Neary, J. T., Cattabeni, F., et al. (2002) Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. J. Neurochem. 83, 1285–1296.

    PubMed  CAS  Google Scholar 

  50. Brambilla, R., Cottini, L., Cattabeni, F., et al. (2001) ATP induces gliosis by activating a novel P2Y receptor coupled to COX-2 upregulation via a calcium-independent RAS/ERK1/2 Pathway. Soc. Neurosci. 38, 5(Abstract).

    Google Scholar 

  51. Santiago-Perez, L. I., Flores R. V., Santos-Berrios C., et al. (2001) P2Y(2) nucleotide receptor signaling in human monocytic cells: activation, desensitization and coupling to mitogen-activated protein kinases. J. Cell. Physiol. 187, 196–208.

    PubMed  CAS  Google Scholar 

  52. Pillois, X., Chaulet, H., Belloc, I., Dupuch, F., Desgranges, C., and Gadeau, A. P. (2002) Nucleotide receptors involved in UTP-induced rat arterial smooth muscle cell migration. Circ. Res. 90, 678–681.

    PubMed  CAS  Google Scholar 

  53. Chaulet, H., Desgranges, C., Renault, M. A., et al. (2001) Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circ. Res. 89, 772–778.

    PubMed  CAS  Google Scholar 

  54. Sauzeau, V., Le Jeune, H., Cario-Toumaniantz, C., et al. (2000) P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptors are coupled to Rho and Rho kinase activation in vascular myocytes. Am. J. Physiol. Heart Circ. Physiol. 278, H1751-H1761.

    PubMed  CAS  Google Scholar 

  55. Ikeuchi, Y. and Nishizaki, T. (1996) P2 purinoceptor-operated potassium channel in rat cerebellar neurons. Biochem. Biophys. Res. Commun. 218, 67–71.

    PubMed  CAS  Google Scholar 

  56. Ikeuchi, Y., Nishizaki, T., Mori, M., and Okada, Y. (1996) Regulation of the potassium current and cytosolic Ca2+ release induced by 2-methylthio ATP in hippocampal neurons. Biochem. Biophys. Res. Commun. 218, 428–433.

    PubMed  CAS  Google Scholar 

  57. Ikeuchi, Y. and Nishizaki, T. (1995) ATP-evoked potassium currents in rat striatal neurons are mediated by a P2 purinergic receptor. Neurosci. Lett. 190, 89–92.

    PubMed  CAS  Google Scholar 

  58. Nakamura, F. and Strittmatter, S. M. (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch- induced impulse generation. Proc. Natl. Acad. Sci. USA. 93, 10465–10470.

    PubMed  CAS  Google Scholar 

  59. Nakazawa, K., Inoue, K., and Inoue, K. (1994) ATP reduces voltage-activated K+ current in cultured rat hippocampal neurons. Pflugers Arch. 429, 143–145.

    PubMed  CAS  Google Scholar 

  60. Boehm, S. (1998) Selective inhibition of M-type potassium channels in rat sympathetic neurons by uridine nucleotide preferring receptors. Br. J. Pharmacol. 124, 1261–1269.

    PubMed  CAS  Google Scholar 

  61. Xu, L. and Enyeart, J. J. (1999) Purine and pyrimidine nucleotides inhibit a noninactivating K+ current and depolarize adrenal cortical cells through a G protein-coupled receptor. Mol. Pharmacol. 55, 364–376.

    PubMed  CAS  Google Scholar 

  62. Wilson, S. M. and Pappone, P. A. (1999) P2 receptor modulation of voltage-gated potassium currents in brown adipocytes. J. Gen. Physiol. 113, 125–138.

    PubMed  CAS  Google Scholar 

  63. Parker, K. E. and Scarpa, A. (1995) An ATP-activated nonselective cation channel in guinea pig ventricular myocytes. Am. J. Physiol. 269, H789-H797.

    PubMed  CAS  Google Scholar 

  64. Filippov, A. K., Webb, T. E., Barnard, E. A., and Brown, D. A. (1997) Inhibition by heterologously-expressed P2Y2 nucleotide receptors of N-type calcium currents in rat sympathetic neurones. Br. J. Pharmacol. 121, 849–851.

    PubMed  CAS  Google Scholar 

  65. Filippov, A. K., Webb, T. E., Barnard, E. A., and Brown, D. A. (1998) P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J. Neurosci. 18, 5170–5179.

    PubMed  CAS  Google Scholar 

  66. Qu, Y., Campbell, D. L., and Strauss, H. C. (1993) Modulation of L-type Ca2+ current by extracellular ATP in ferret isolated right ventricular myocytes. J. Physiol. 471, 295–317.

    PubMed  CAS  Google Scholar 

  67. Filippov, A. K., Brown, D. A., and Barnard, E. A. (2000) The P2Y(1) receptor closes the N-type Ca(2+) channel in neurones, with both adenosine triphosphates and diphosphates as potent agonists. Br. J. Pharmacol. 129, 1063–1066.

    PubMed  CAS  Google Scholar 

  68. Fleischhauer, J. C., Mitchell, C. H., Peterson-Yantorno, K., Coca-Prados, M., and Civan, M. M. (2001) PGE(2), Ca(2+), and cAMP mediate ATP activation of Cl(−) channels in pigmented ciliary epithelial cells. Am. J. Physiol. Cell. Physiol. 281, C1614-C1623.

    PubMed  CAS  Google Scholar 

  69. Wu, D. and Mori, N. (1999) Extracellular ATP-induced inward current in isolated epithelial cells of the endolymphatic sac. Biochim. Biophys. Acta. 1419, 33–42.

    PubMed  CAS  Google Scholar 

  70. Banderali, U., Brochiero, E., Lindenthal, S., Raschi, C., Bogliolo, S., and Ehrenfeld, J. (1999) Control of apical membrane chloride permeability in the renal A6 cell line by nucleotides. J. Physiol. 519(Pt 3), 737–751.

    PubMed  CAS  Google Scholar 

  71. Land, S. C. and Collett, A. (2001) Detection of Cl- flux in the apical microenvironment of cultured foetal distal lung epithelial cells. J. Exp. Biol. 204, 785–795.

    PubMed  CAS  Google Scholar 

  72. Devor, D. C. and Pilewski, J. M. (1999) UTP inhibits Na+ absorption in wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am. J. Physiol. 276, C827-C837.

    PubMed  CAS  Google Scholar 

  73. Mall, M., Wissner, A., Gonska, T., et al. (2000) Inhibition of amiloride-sensitive epithelial Na(+) absorption by extracellular nucleotides in human normal and cystic fibrosis airways. Am. J. Respir. Cell Mol. Biol. 23, 755–761.

    PubMed  CAS  Google Scholar 

  74. Jetten, A. M., Yankaskas, J. R., Stutts, M. J., Willumsen, N. J., and Boucher, R. C. (1989) Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia. Science 244, 1472–1475.

    PubMed  CAS  Google Scholar 

  75. Mason, S. J., Paradiso, A. M., and Boucher, R. C. (1991) Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br. J. Pharmacol. 103, 1649–1656.

    PubMed  CAS  Google Scholar 

  76. Sheng, M. (1996) PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17, 575–578.

    PubMed  CAS  Google Scholar 

  77. Saras, J. and Heldin, C. H. (1996) PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem. Sci. 21, 455–458.

    PubMed  CAS  Google Scholar 

  78. Kornau, H. C., Seeburg, P. H., and Kennedy, M. B. (1997) Interaction of ion channels and receptors with PDZ domain proteins. Curr. Opin. Neurobiol. 7, 368–373.

    PubMed  CAS  Google Scholar 

  79. Hall, R. A., Ostedgaard, L. S., Premont, R. T., et al. (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA. 95, 8496–8501.

    PubMed  CAS  Google Scholar 

  80. Hall R. A., Premont R. T., Chow C. W., et al. (1998) The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630.

    PubMed  CAS  Google Scholar 

  81. Bagorda, A., Guerra, L., Di Sole, F., et al. (2002) Reciprocal protein kinase A regulatory interactions between cystic fibrosis transmembrane conductance regulator and Na+/H+ exchanger isoform 3 in a renal polarized epithelial cell model. J. Biol. Chem. 277, 21480–21488.

    PubMed  CAS  Google Scholar 

  82. Reczek, D., Berryman, M., and Bretscher, A. (1997) Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 139, 169–179.

    PubMed  CAS  Google Scholar 

  83. Lamprecht, G., Weinman, E. J., and Yun, C. H. (1998) The role of NHERF and E3KARP in the cAMP-mediated inhibition of NHE3. J. Biol. Chem. 273, 29972–29978.

    PubMed  CAS  Google Scholar 

  84. Bretscher, A., Chambers, D., Nguyen, R., and Reczek, D. (2000) ERM-Merlin and EBP50 protein families in plasma membrane organization and function. Annu. Rev. Cell Dev. Biol. 16, 113–143.

    PubMed  CAS  Google Scholar 

  85. Sun, F., Hug, M. J., Lewarchik, C. M., Yun, C. H., Bradbury, N. A., and Frizzell, R. A. (2000) E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. J. Biol. Chem. 275, 29539–29546.

    PubMed  CAS  Google Scholar 

  86. Short, D. B., Trotter, K. W., Reczek, D., et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19797–19801.

    PubMed  CAS  Google Scholar 

  87. Wei, L., Vankeerberghen, A., Cuppens, H., Cassiman, J. J., Droogmans, G., and Nilius, B. (2001) The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca(2+)-activated Cl- channels. Pflugers Arch. 442, 280–285.

    PubMed  CAS  Google Scholar 

  88. Boucher, R. C., Stutts, M. J., Knowles, M. R., Cantley, L., and Gatzy, J. T. (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J. Clin. Invest. 78, 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  89. Mall, M., Bleich, M., Kuehr, J., Brandis, M., Greger, R., and Kunzelmann, K. (1999) CFTR-mediated inhibition of epithelial Na+ conductance in human colon is defective in cystic fibrosis. Am. J. Physiol. 277, G709-G716.

    PubMed  CAS  Google Scholar 

  90. Boucherot, A., Schreiber, R., and Kunzelmann, K. (2001) Role of CFTR’s PDZ1-binding domain, NBF1 and Cl(−) conductance in inhibition of epithelial Na(+) channels in Xenopus oocytes. Biochim. Biophys. Acta. 1515, 64–71.

    PubMed  CAS  Google Scholar 

  91. O’Grady, S. M., Elmquist, E., Filtz, T. M., Nicholas, R. A., and Harden, T. K. (1996) A guanine nucleotide-independent inwardly rectifying cation permeability is associated with P2Y1 receptor expression in Xenopus oocytes. J. Biol. Chem. 271, 29080–29087.

    PubMed  CAS  Google Scholar 

  92. Lee, S. Y., Nicholas, R. A., and O’Grady, S. M. (2002) P2Y(2) and P2Y(6) receptors expression in Xenopus oocytes modulates activation and inactivation gating of an endogenous ion channel. FASEB J 16(4), A191-A191 (Abstract).

    Google Scholar 

  93. Lee, S. Y., Wolff, S. C., Nicholas, R. A., and O’Grady, S. M. (2003) P2Y receptors modulate ion channel function through interactions involving their C-terminal domain. Mol. Pharmacol. 63, 878–885.

    PubMed  CAS  Google Scholar 

  94. Parker, I., Gundersen, C. B., and Miledi, R. (1985) A transient inward current elicited by hyperpolarization during serotonin activation in Xenopus oocytes. Proc. R. Soc. Lond. B Biol. Sci. 223, 279–292.

    Article  PubMed  CAS  Google Scholar 

  95. Ni, Y. G., Panicker, M. M., and Miledi, R. (1997) Efficient coupling of 5-HT1a receptors to the phospholipase C pathway in Xenopus oocytes. Brain Res. Mol. Brain Res. 51, 115–122.

    PubMed  CAS  Google Scholar 

  96. Guttridge, K. L., Smith, L. D., and Miledi, R. (1995) Xenopus Gq alpha subunit activates the phosphatidylinositol pathway in Xenopus oocytes but does not consistently induce oocyte maturation. Proc. Natl. Acad. Sci. USA. 92, 1297–1301.

    PubMed  CAS  Google Scholar 

  97. Lee, S. Y. and O’Grady, S. M. (2001) Ion channel function associated with human P2Y(11) receptor expression in Xenopus oocytes. FASEB J. 15(5), A928-A928. (Abstract)

    Google Scholar 

  98. Giblin, J. P., Quinn, K., and Tinker, A. (2002) The cytoplasmic C-terminus of the sulfonylurea receptor is important for KATP channel function but is not key for complex assembly or trafficking. Eur. J. Biochem. 269, 5303–5313.

    PubMed  CAS  Google Scholar 

  99. Schwanstecher, M., Loser, S., Chudziak, F., and Panten, U. (1994) Identification of a 38-kDa high affinity sulfonylurea-binding peptide in insulin-secreting cells and cerebral cortex. J. Biol. Chem. 269, 17768–17771.

    PubMed  CAS  Google Scholar 

  100. Clement, J. P. 4th, Kunjilwar, K., Gonzalez, G., et al. (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18, 827–838.

    PubMed  CAS  Google Scholar 

  101. Reimann, F., Tucker, S. J., Proks, P., and Ashcroft, F. M. (1999) Involvement of the N-terminus of Kir6.2 in coupling to the sulphonylurea receptor. J. Physiol. 518 (Pt 2), 325–336.

    PubMed  CAS  Google Scholar 

  102. Seino, S. (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol. 61, 337–362.

    PubMed  CAS  Google Scholar 

  103. Blum, R., Kafitz, K. W., and Konnerth, A. (2002) Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9. Nature 419, 687–693.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. O’Grady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., O’Grady, S.M. Modulation of ion channel function by P2Y receptors. Cell Biochem Biophys 39, 75–88 (2003). https://doi.org/10.1385/CBB:39:1:75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:1:75

Index Entries

Navigation