Skip to main content
Log in

Circadian rhythm entrainment in flies and mammals

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Circadian rhythms are a fundamental adaptation of living cells to the daily and seasonal fluctuation in light and temperature. Circadian oscillations persist in constant conditions; however, they are also phase-adjusted (entrained) by day-night cycles. It is this entrainability that provides for the proper phasing of the program, to the sequence of external changes that it has evolved to exploit. Synchronization of circadian oscillators with the outside world is achieved because light, temperature, or other external temporal cues, have acute effects on the levels of one or more of the clock's components. The consequences are ripples through the interconnected molecular loops, leading to a stable phase realignment of the endogenous rhythm generator and the external conditions. This review summarized the evolving knowledge of the different types, modes, and molecular processes of entrainment in flies and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edmunds, L. N. (1988) Cellular and Molecular Bases of Biological Clocks, Springer-Verlag, New York.

    Google Scholar 

  2. Pittenbrigh, C. S. (1981) Circadian systems: entrainment, in Handbook of Behavioral Neurobiology (Ashoff, J., ed.), Plenum, New York, pp. 95–124.

    Google Scholar 

  3. Edery, I. (2000) Circadian rhythms in a nutshell. Physiol. Genom. 3, 59–74.

    CAS  Google Scholar 

  4. Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zeng, B., et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019.

    PubMed  CAS  Google Scholar 

  5. Reppert, S. M. and Weaver, D. R. (2000) Comparing clockworks: mouse versus fly. J. Biol. Rhythms 15, 357–364.

    PubMed  CAS  Google Scholar 

  6. King, D. P. and Takahashi, J. S. (2000) Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713–742.

    PubMed  CAS  Google Scholar 

  7. Lowrey, P. L. and Takahashi, J.S. (2000) Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34, 533–562.

    PubMed  CAS  Google Scholar 

  8. Williams, J. A. and Sehgal, A. (2001) Molecular components of the circadian system in Drosophila. Annu. Rev. Physiol. 63, 729–755.

    PubMed  CAS  Google Scholar 

  9. Devlin, P. F. and Kay, S. A. (2001) Circadian photoperception. Ann. Rev. Physiol. 63, 677–694.

    CAS  Google Scholar 

  10. Young, M. W. and S. A. Kay. (2001) Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715.

    PubMed  CAS  Google Scholar 

  11. Clayton, J. D., Kyriacou, C. P., and Reppert, S. M. (2001) Keeping time with the human genome. Nature 409, 829–831.

    PubMed  CAS  Google Scholar 

  12. Kloss, B., Price, J. L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C. S., et al. (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase lepsilon. Cell 94, 97–107.

    PubMed  CAS  Google Scholar 

  13. Price, J. L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., and Young, M. W. (1998) Doubletime is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95.

    PubMed  CAS  Google Scholar 

  14. Lowrey, P. L., Shimomura, K., Antoch, M. P., Yamazaki, S., Zemenides, P. D., Ralph, M. R. et al. (2000) Positional syntetnic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–492.

    PubMed  CAS  Google Scholar 

  15. Toh, K. L., Jones, C. R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., et al. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043.

    PubMed  CAS  Google Scholar 

  16. Vitaterna, M. H., King, D. P., Chang, A. M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., et al. (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725.

    PubMed  CAS  Google Scholar 

  17. Albrecht, U., Sun, Z. S., Eichele, G., and Lee, C. C. (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055–1064.

    PubMed  CAS  Google Scholar 

  18. Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569.

    PubMed  CAS  Google Scholar 

  19. Hsu, D. S., Zhao, X., Zhao, S., Kazantsev, A., Wang, R. P., Todo, T., et al. (1996) Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35, 13,871–13,877.

    CAS  Google Scholar 

  20. Koike, N., Hida, A., Nimano, R., Hirose, M., Sakaki, Y., and Tei, H. (1998) Identification of the mammalian homologues of the Drosophila time-less gene, Timeless1. FEBS Lett. 441, 427–431.

    PubMed  CAS  Google Scholar 

  21. Sangoram, A. M., Saez, L., Antoch, M. P., Gekakis, N., Staknis, D., Whiteley, A., et al. (1998) Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21, 1101–1113.

    PubMed  CAS  Google Scholar 

  22. Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G., and Lee, C. C. (1997) RIGUI, a putative mammalian ortholog of Drosophila period gene. Cell 91, 1043–1053.

    Google Scholar 

  23. Takumi, T., Matsubara, C., Shigeyoshi, Y., Taguchi, K., Yagita, K., Maebayashi, Y., et al. (1998) A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 3, 167–176.

    PubMed  CAS  Google Scholar 

  24. Takumi, T., Taguchi, K., Miyake, S., Sakakida, Y., Takshima, N., Matsubara, C., et al. (1998) A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17, 4753–4759.

    PubMed  CAS  Google Scholar 

  25. Takumi, T., Nagamine, Y., Miyake, S., Matsubara, C., Taguchi, K., Takekida, S., et al. (1999) A mammalian ortholog of Drosophila timeless, highly expressed in SCN and retina, forms a complex with mPER1. Genes Cells 4, 67–75.

    PubMed  CAS  Google Scholar 

  26. Zylka, M. J., Shearman, P. L., Weaver, D. R., and Reppert, S. M. (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110.

    PubMed  CAS  Google Scholar 

  27. Zylka, M. J., Shearman, P. L., Levine, J. D., Jin, X., Weaver, D. R., and Reppert, S. M. (1998) Molecular analysis of mammalian timeless. Neuron 21, 1115–1122.

    PubMed  CAS  Google Scholar 

  28. Ralph, M. R. and Menaker, M. (1998) A mutation of the circadian system in golden hamsters. Science 241, 1225–1227.

    Google Scholar 

  29. Sidote, D., Majercak, J., Parikh, V., and Edery, I. (1998) Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM. Mol. Cell. Biol. 18, 2004–2013.

    PubMed  CAS  Google Scholar 

  30. Rea, M. A. (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol. Int. 15, 395–423.

    PubMed  CAS  Google Scholar 

  31. Eskin, A. (1979) Circadian system of the Aplysia eye: properties of the pacemaker and mechanisms of its entrainment. Fed. Proc. 38, 2573–2579.

    PubMed  CAS  Google Scholar 

  32. Lucas, R. J. and Foster, R. G. (1999) Photoentrainment in mammals: a role of cryptochrome? J. Biol. Rhythms 14, 4–10.

    PubMed  Google Scholar 

  33. Helfrich-Foster, C. (1998) Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain behavioral study of dusconnected mutants. J. Comp. Physiol. 182, 435–453.

    Google Scholar 

  34. Kaneko, M. (1998) Neural substrates of Drosophila rhythms revealed by mutants and molecular manipulations. Curr. Opin. Neurobiol. 8, 652–658.

    PubMed  CAS  Google Scholar 

  35. Plautz, J. D., Kaneko, M., Hall, J. C., and Kay, S. A. (1997) Independent photoreceptive circadian clock throughout Drosophila. Science 278, 1632–1635.

    PubMed  CAS  Google Scholar 

  36. Emery, P., So, W. V., Kaneko, M., Hall, J. C., and Rosbash, M. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679.

    PubMed  CAS  Google Scholar 

  37. Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S., and Hall, J. C. (1993) Behavior in light-dark cycles of Drosophila mutants that are arrythmic, blind, or both. J. Biol. Rhythms 8, 67–94.

    PubMed  CAS  Google Scholar 

  38. Van Gelder, R. N. (1998) Circadian rhythms: eyes of the clock. Curr. Biol. 8, R798-R801.

    PubMed  Google Scholar 

  39. Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wagner-Smith, K., Kay, S. A., et al. (1998) The cry b-mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692.

    PubMed  CAS  Google Scholar 

  40. Ceriani, M. F., Darlington, T. K., Stakins, D., Mas, P., Petti, A. A., Weitz, C. J., et al. (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–556.

    PubMed  CAS  Google Scholar 

  41. Rosato, E., Codd, V., Mazzota, G., Piccin, A., Zardan, M., Costa, R., et al. (2001) Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr. Biol. 11, 909–917.

    PubMed  CAS  Google Scholar 

  42. Foster, R. G. (1998) Sheding light on the biological clock. Neuron 20, 829–832.

    PubMed  CAS  Google Scholar 

  43. Von Schantz, M., Provencio, I., and Foster, R. G. (2000) Recent developments in circadian photoreception: more than meet the eye. Invest. Ophthalmol. Vis. Sci. 41, 1605–1607.

    Google Scholar 

  44. Tosini, G. and Menaker, M. (1996) Circadian rhythms in cultured mammalian retina. Science 272, 419–421.

    PubMed  CAS  Google Scholar 

  45. Tosini, G. and Menaker, M. (1998) The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res. 789, 221–228.

    PubMed  CAS  Google Scholar 

  46. Herzog, E. D. and Block, G. D. (1999) Keeping an eye on retinal clocks. Chronol. Int. 16, 229–247.

    Article  CAS  Google Scholar 

  47. Nevo, E. (1991) Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Evol. Biol. 25, 1–125.

    Google Scholar 

  48. Cooper, H. M., Herbin, M., and Nevo, E. (1993) Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal. Nature 361, 156–159.

    PubMed  CAS  Google Scholar 

  49. Cooper, H. M., Herbin, M., and Nevo, E. (1993) Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J. Comp. Neurol. 328, 313–350.

    PubMed  CAS  Google Scholar 

  50. Ben-Shlomo, R., Ritte, U., and Nevo, E. (1995). Activity pattern and rhythm in the subterranean mole rat superspecies Spalax ehrenbergi. Behav. Genet. 25, 239–245.

    PubMed  CAS  Google Scholar 

  51. Ben-Shlomo, R., Nevo, E., Ritte, U., Steinlechner, S., and Klante, G. (1996) 6-Sulphatoxymelatonin secretion in different locomotor activity types of the blind mole rat Spalax ehrenbergi. J. Pineal Res. 21, 243–250.

    PubMed  CAS  Google Scholar 

  52. Haim, A., Heth, G., Pratt, H., and Nevo, E. (1983) Photoperiodic effects on thermoregulation in a “blind” subterranean mammal. J. Exp. Biol. 107, 59–64.

    PubMed  CAS  Google Scholar 

  53. Berson, D. M., Dunn, F. A., and Takao, M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073.

    PubMed  CAS  Google Scholar 

  54. Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., and Rollag, M. D. (2000) A novel human opsin in the inner retina. J. Neurosci. 20, 600–605.

    PubMed  CAS  Google Scholar 

  55. Provencio, I., Rollag, M. D., and Castrucci, A. M. (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493.

    PubMed  CAS  Google Scholar 

  56. Hattar, S., Liao, H. W., Takao, M., Berson, D. M., and Yau, K. W. (2002) Melanopsin-containing retinal ganglion cells: archiecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070.

    PubMed  CAS  Google Scholar 

  57. Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E., and Saper, C. B. (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 4, 1165.

    PubMed  CAS  Google Scholar 

  58. Hannibal, J., Hindersson, P., Knudsen, S. M., Georg, B., and Fahrenkrug, J. (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22, RC191.

    PubMed  Google Scholar 

  59. Young, M. W. (1998) The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. 67, 135–152.

    PubMed  CAS  Google Scholar 

  60. Naidoo, N., Song, W., Hunter-Ensor, M., and Sehgal, A. (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285, 1737–1741.

    PubMed  CAS  Google Scholar 

  61. Emery, P., Stanewsky, R., Helfrich-Foster, C., Emery-Le, M., Hall, J. C., and Rosbach, M. (2000) Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493–504.

    PubMed  CAS  Google Scholar 

  62. Emery, P., Stanewsky, R., Hall, J. C., and Rosbach, M. (2000) A unique circadian-rhythm photoreceptor. Nature 404, 456–457.

    PubMed  CAS  Google Scholar 

  63. Krishnan, B., Levine, J., Kathlea, M., Lynch, S., Dowse, H. B., Funes, P., et al. (2001). A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 313–316.

    PubMed  CAS  Google Scholar 

  64. Ivanchenko, M., Stanewsky, R., and Giebultowicz, J. M. (2001) Circadian photoreception in Drosophila: function of cryptochrome in peripheral and central clock. J. Biol. Rhythms 16, 205–215.

    PubMed  CAS  Google Scholar 

  65. Kim, S., McKay, R. R., Miller, K., and Shortridge, R. D. (1995) Multiple subtype of phospholipase C are encoded by the nonpA gene of Drosophila melanogaster. J. Biol. Chem. 270, 14,376–14,382.

    CAS  Google Scholar 

  66. Schotland, P., Hunter-Ensor, M., Lawrence, T., and Seghal, A. (2000) Altered entrainment and feedback loop function affected by a mutant period protein. J. Neurosci. 20, 958–968.

    PubMed  CAS  Google Scholar 

  67. Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., de Vries, G. J., and Reppert, S. M. (1999) A molecular mechanism regulating circadian rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57–68.

    PubMed  CAS  Google Scholar 

  68. Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., et al. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205.

    PubMed  CAS  Google Scholar 

  69. Hogenecsh, J. B., Gu, Y. Z., Jain, S., and Bradfield, C. A. (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95, 5474–5479.

    Google Scholar 

  70. Takahata, S., Sogawa, K., Kobayashi, A., Ema, M., Mimura, J., Ozaki, N., et al. (1998) Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF and clock. Biochem. Biophys. Res. Commun. 248, 789–794.

    PubMed  CAS  Google Scholar 

  71. Honma, S., Ikeda, M., Abe, H., Tanahashi, Y., Namihira, M., Honma, K., et al. (1998) Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem. Biophys. Res. Commun. 250, 83–87.

    PubMed  CAS  Google Scholar 

  72. Oishi, K., Fukui, H., and Ishida, N. (2000) Rhythmic expression of BMAL1 mRNA is altered in Clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues. Biochem. Biophys. Res. Commun. 268, 164–171.

    PubMed  CAS  Google Scholar 

  73. Griffin, E. R., Jr., Stakins, D., and Weitz, C. J. (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771.

    PubMed  CAS  Google Scholar 

  74. Okamura, H., Miyake, S., Sumi, Y., Yamaguchi, S., Yasui, A., Muijtjens, M., et al. (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286, 2531–2534.

    PubMed  CAS  Google Scholar 

  75. van der Horst, G. T., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S. Takao, M., et al. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythm. Nature 398, 627–630.

    PubMed  Google Scholar 

  76. Vitaterna, M. H., Selby, C. P., Todo, T., Niwa, T., Thompson, C., Fruechte, E. M., et al. (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci.USA 96, 12,114–12,119.

    CAS  Google Scholar 

  77. Albrecht, U., Zheng, B., Larkin, D., Sun, Z. S., and Lee, C. C. (2001) mPer1 and mPer2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16, 100–104.

    PubMed  CAS  Google Scholar 

  78. Field, M. D., Maywood, E. S., Obrien, J. A., Weaver, D. R., Reppert, S. M., and Hastings, M. H. (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447.

    PubMed  CAS  Google Scholar 

  79. Benna, C., Scannapieco, P., Piccin, A., Sandelli, F., Zordan, M., Kyriacou, C. P., et al. (2000) A second timeless gene in Drosophila shares greater sequence similarity with mammalian tim. Curr. Biol. 10, R512-R513.

    PubMed  CAS  Google Scholar 

  80. Gotter, A. L., Manganaro, T., Weaver, D. R., Kolakowski, L. F., Jr., Possidente, B., Sriram, S. et al. (2000) A time-less function for mouse timeless. Nat. Neurosci. 3, 755–756.

    PubMed  CAS  Google Scholar 

  81. Hasting, J. W., Rusak, B., and Boulos, Z. (1991) Circadian rhythms: the physiology of biological timing, in Neural and Integrative Animal Physiology (Prosser, C. L. ed.), Wiley-Liss New York, pp. 435–546.

    Google Scholar 

  82. Tokura, H. and Aschoff, J. (1983) Effects of temperature on the circadian rhythm of pigtailed macaques Macaca nemestrina. Am. J. Physiol. 245, R800-R804.

    PubMed  CAS  Google Scholar 

  83. Zimmerman, W. F., Pittendrigh, C. S., and Pavlidis, T. (1968) Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. J. Insect Physiol. 14, 669–684.

    PubMed  CAS  Google Scholar 

  84. Bruce, V. and Pittendeigh, C. S. (1956) Temperature independence in a unicellular “clock”. Proc. Natl. Acad. Sci. USA 42, 676–682.

    PubMed  CAS  Google Scholar 

  85. Costa, R., Peixoto, A. A., Thackeray, J. T., Dalglish, R., and Kyriacou, C. P. (1991) Length polymorphism in the Threonine-Glycine-encoding repeat region of the period gene in Drosophila. J. Mole. Evol. 32, 238–246.

    CAS  Google Scholar 

  86. Costa, R., Peixoto, A. A., Barbujani, G., and Kyriacou, C. P. (1992) A latitudinal cline in a Drosophila clock gene. Proc. R. Soc. Lond. B 250, 43–49.

    CAS  Google Scholar 

  87. Sawyer, L. A., Hennessy, J. M., Peixoto, A. A., Rosato, E., Parkinson, H., Costa, R., et al. (1997) Natural variation in a Drosophila clock gene and temperature compensation. Science 278, 2117–2120.

    PubMed  CAS  Google Scholar 

  88. Rosato, E., Peixoto, A. A., Gallippi, A., Kyriacou, C. P., and Costa, R. (1996) Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster. J. Mol. Evol. 42, 392–408.

    PubMed  CAS  Google Scholar 

  89. Rosato, E., Piccin, A., and Kyriacou, C. P. (1997) Circadian rhythms: from behaviour to molecules. BioEssays 19, 1075–1082.

    PubMed  CAS  Google Scholar 

  90. Hall, J. C. (1997) Circadian pacemakers blowing hot and cold—but they're clocks, not thermometers. Cell 90, 9–12.

    PubMed  CAS  Google Scholar 

  91. Majercak, J., Sidote, D., Hardin, P. E., and Edery, I. (1999) How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219–230.

    PubMed  CAS  Google Scholar 

  92. Ruby, N. F., Burns, D. E., and Heller, C. (1999) Circadian rhythms in the suprachiasmatic nucleus are temperature-compensated and phase-shifted by heat pulses in vitro. J. Neurosci. 19, 8630–8636.

    PubMed  CAS  Google Scholar 

  93. Boulnat, J. A. (1996) Hypothalamic neurons regulating body temperature, in Handbook of Physiology, Section 4, Volume 1, Environmental Physiology (Fregly, M. J. and Blatteis, C. M., eds.), Oxford University Press, Oxford, pp. 105–126.

    Google Scholar 

  94. Aschoff, J. and Tokura, H. (1986) Circadian activity rhythms in squirrel monkeys: entrainment by temperature cycles. J. Biol. Rhythms 1, 91–99.

    PubMed  CAS  Google Scholar 

  95. Francis, A. J. and Coleman, G. J. (1988) The effect of ambient temperature cycles upon circadian running and drinking activity in male and female laboratory rats. Physiol. Behav. 43, 471–477.

    PubMed  CAS  Google Scholar 

  96. Pohl, H. (1998) Temperature cycles as zeitgeber for the circadian clock of two burrowing rodents, the normothermic antelope ground squirrel and the heterothermic Syrian hamster. Biol. Rhythm Res. 29, 311–325.

    Google Scholar 

  97. Francis, A. J. and Coleman, G. J. (1997) Phase response curves to ambient temperature pulses in rats. Physiol. Behav. 62, 1211–1217.

    PubMed  CAS  Google Scholar 

  98. Burgoon, P. W. and Boulant, J. A. (1998) Synaptic inhibition: its role in suprachiasmatic nucleus normal thermosensitivity and temperature compensation in the rat. J. Physiol. 512, 793–807.

    PubMed  CAS  Google Scholar 

  99. Krishnan, B., Dryer, S. E., and Hardin, P. H. (1999) Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375–378.

    PubMed  CAS  Google Scholar 

  100. Goel, N. and Lee, T. M. (1997a) Olfactory bulbectomy impedes social but not photic reentrainment of circadian rhythms in female Octodon degus. J. Biol. Rhythms 12, 362–370.

    PubMed  CAS  Google Scholar 

  101. Goel, N., Lee, T. M., and Pieper, D. R. (1998) Removal of the olfactory bulb delays photic reentrainment of circadian activity rhythms and modifies the reproductive axis in male Octodon degus. Brain Res. 792, 229–236.

    PubMed  CAS  Google Scholar 

  102. Amir, S., Cain, S., Sullivan, J., Robinson, B., and Stewart, J. (1999) Olfactory stimulation enhances light-induced phase shifts in free-running activity rhythms and Fos expression in the suprachiasmatic nucleus. Neuroscience 92, 1165–1170.

    PubMed  CAS  Google Scholar 

  103. Shkolnik, A. (1971) Diurnal activity in a small desert rodent. Int. J. Biometeorol. 15, 115–120.

    PubMed  CAS  Google Scholar 

  104. Rubal, A., Choshniak, I., and Haim, A. (1992) Daily rhythms of metabolic rate and body temperature of two murids from extremely different habitat. Chronobiol. Int. 9, 341–349.

    PubMed  CAS  Google Scholar 

  105. Haim, A. and Rozenfeld, F. M. (1993) Temporal segregation in coexisting Acomys species: the role of odour. Physiol. Behav. 54, 1159–1161.

    PubMed  CAS  Google Scholar 

  106. Haim, A. and Fluxman, S. (1996) Daily Rhythms of metabolic rates: role of chemical signals in coexistence of spiny mice of the genus Acomys. J. Chem. Ecol. 22, 223–229.

    CAS  Google Scholar 

  107. Zufall, F. and Munger S. D. (2001) From odor and pheromone transduction to the organization of the sense of smell. Trends Neurosci. 24, 191–193.

    PubMed  CAS  Google Scholar 

  108. Mrosovsky, N. (1988) Phase response curves for social entrainment. J. Comp. Physiol. A 162, 35–46.

    PubMed  CAS  Google Scholar 

  109. Goel, N. and Lee, T. M. (1997b) Social cues modulate free-running circadian activity rhythms in the diurnal rodent, Octodon degus. Am. J. Physiol. 273, R797-R804.

    PubMed  CAS  Google Scholar 

  110. Elmore, S. K., Betrus, P. A., and Burr, R. (1994) Light, social zeitgebers, and the sleep-wake cycle in the entrainment of human circadian rhythms. Res. Nurs. Health 17, 471–478.

    PubMed  CAS  Google Scholar 

  111. Nakao, M., Yamamoto, K., Nakamura, K., Katayama, N., and Yamamoto, M. (2001) A circadian system model with feedback of cross-correlation between sleep-wake rhythm and oscillator. Psychiatry Clin. Neurosci. 55, 295–297.

    PubMed  CAS  Google Scholar 

  112. Mead, S., Ebling, F. J. P., Maywood, E. S., Humby, T., Herbert, J., and Hastings, M. H. (1992) A nonphotic stimulus causes instantaneous phase advances of the light-entrainable circadian oscillator of the Syrian hamster but does not induce the expression of c-fos in the suprachiasmatic nuclei. J. Neurosci. 12, 2516–2522.

    PubMed  CAS  Google Scholar 

  113. Mrosovsky, N. (1993) Tau changes after single nonphotic events. Chronobiol. Int. 10, 271–276.

    PubMed  CAS  Google Scholar 

  114. Hastings, M. H., Duffield, G. E., Smith, E. J. D., Maywood, E. S., and Ebling, F. J. P. (1998) Entrainment of the circadian system of mammals by nonphotic cues. Chronobiol. Int. 15, 425–445.

    Article  PubMed  CAS  Google Scholar 

  115. Maywood, E. S., Mrosovsky, N., Field, M. D., and Hastings, M. H. (1999) Rapid down-regulation of mammalian Period genes during behavioral resetting of the circadian clock. Proc. Natl. Acad. Sci. USA 96, 15,211–15,216.

    CAS  Google Scholar 

  116. Abe, H. and Rusak, B. (1992) Anticipatory activity and entrainment of circadian rhythms in Syrian hamsters exposed to restricted palatable diets. Am. J. Physiol. 263, R116-R124.

    PubMed  CAS  Google Scholar 

  117. Mistlberger, R. E. (1993) Circadian properties of anticipatory activity to restricted water access in suprachiasmatic-ablated hamsters. Am. J. Physiol. 264, R22-R29.

    PubMed  CAS  Google Scholar 

  118. Stephan, F. K. (1997) Calories affect zeitgeber properties of the feeding entrained circadian oscillator. Physiol. Behav. 62, 995–1002.

    PubMed  CAS  Google Scholar 

  119. Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y., and Menaker, M. (2001) Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493.

    PubMed  CAS  Google Scholar 

  120. Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., and Schibler, U. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961.

    PubMed  CAS  Google Scholar 

  121. Hara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M., et al. (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6, 269–278.

    PubMed  CAS  Google Scholar 

  122. Le Minh, N., Damiola, F., Tronche, F., Schutz, G., and Schibler, U. (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ben-Shlomo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Shlomo, R., Kyriacou, C.P. Circadian rhythm entrainment in flies and mammals. Cell Biochem Biophys 37, 141–156 (2002). https://doi.org/10.1385/CBB:37:2:141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:37:2:141

Index Entries

Navigation