Skip to main content
Log in

A computational comparison of the atomic models of the actomyosin interface

  • Original article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Several atomic models of the actomyosin interface have been proposed based on the docking together of their component structures using electron microscopy and resonance energy-transfer measurements. Although these models are in approximate agreement in the location of the binding interfaces when myosin is tightly bound to actin, their relationships to molecular docking simulations based on computational free-energy calculations are investigated here. Both rigid-docking and flexible-docking conformational search strategies were used to identify free-energy minima at the interfaces between atomic models of myosin and actin. These results suggest that the docking model produced by resonance energy-transfer data is closer to a free-energy minimum at the interface than are the available atomic models based on electron microscopy. The conformational searches were performed using both scallop and chicken skeletal muscle myosins and identified similarly oriented actin-binding interfaces that serve to validate that these models are at the global minimum. These results indicate that the existing docking models are close to but not precisely at the lowest-energy initial contact site for strong binding between myosin and actin that should represent an initial contact between the two proteins; therefore, conformational changes are likely to be important during the transition to a strongly bound complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. (1990) Atomic model of the actin filament. Nature 347, 44–49.

    Article  PubMed  CAS  Google Scholar 

  2. Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., et al. (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65.

    Article  PubMed  CAS  Google Scholar 

  3. Schroder, R. R., Manstein, D. J., Jahn, W., Holden, H., Rayment, I., Holmes, K. C., et al. (1993) Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364, 171–174.

    Article  PubMed  CAS  Google Scholar 

  4. Mendelson, R. and Morris, E. P. (1997) The structure of the acto-myosin subfragment 1 complex: results of searches using data from electron microscopy and x-ray crystallography. Proc. Natl. Acad. Sci. USA 94, 8533–8538.

    Article  PubMed  CAS  Google Scholar 

  5. Lorenz, M., Popp, D., and Holmes, K. C. (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836.

    Article  PubMed  CAS  Google Scholar 

  6. Volkmann, N., Hanein, D., Ouyang, G., Trybus, K. M., DeRosier, D. J., and Lowey, S. (2000) Evidence for cleft closure in actomyosin upon ADP release. Nat. Struct. Biol. 7, 1147–1155.

    Article  PubMed  CAS  Google Scholar 

  7. Root, D. D., Stewart, S., and Xu, J. (2002) Dynamic docking of myosin and actin observed with resonance energy transfer. Biochemistry 41, 1786–1794.

    Article  PubMed  CAS  Google Scholar 

  8. Root, D. D., Shangguan, X., Xu, J., and McAllister, M. (1999) Determination of fluorescent probe orientations on biomolecules by conformational searching: algorithm testing and applications to the atomic model of myosin. J. Struct. Biol. 127, 22–34.

    Article  PubMed  CAS  Google Scholar 

  9. Gschwend, D. A., Good, A. C., and Kuntz, I. D. (1996) Molecular docking towards drug discovery. J. Mol. Recogn. 9, 175–186.

    Article  CAS  Google Scholar 

  10. Diller, D. J., and Merz, K. M., Jr. (2001) High throughput docking for library design and library prioritization. Proteins 43, 113–124.

    Article  PubMed  CAS  Google Scholar 

  11. Gohlke, H., Hendlich, M., and Klebe, G. (2000) Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295, 337–452.

    Article  PubMed  CAS  Google Scholar 

  12. Rosenfeld, R., Vajda, S., and DeLisi, C. (1995) Flexible docking and design. Annu. Rev. Biophys. Biomol. Struct. 24, 677–700.

    Article  PubMed  CAS  Google Scholar 

  13. Strynadka, N. C., Eisenstein, M., Katchalski-Katzir, E., Shoichet, B. K., Kuntz, I. D., Abagyan, R., et al. (1996) Molecular docking programs successfully predict the binding of a beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nat. Struct. Biol. 3, 233–239.

    Article  PubMed  CAS  Google Scholar 

  14. Chefils, J., Duquerroy, S., and Janin, J. (1991) Protein-protein recognition analyzed by docking simulation. Protein 11, 271–280.

    Article  Google Scholar 

  15. Rayment, I., Rypniewski, W. R., Schmidt-Bäse, K., Smith, R., Tomchick, D. R., Benning, M. M., et al. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58.

    Article  PubMed  CAS  Google Scholar 

  16. Sutoh, K. (1982) Identification of myosin-binding sites on the actin sequence. Biochemistry 21, 3654–3661.

    Article  PubMed  CAS  Google Scholar 

  17. Mornet, D., Bertrand, R., Pantel, P., Audemanrd, E., and Kassab, R. (1981) Structure of the actinmyosin interface. Nature 292, 301–306.

    Article  PubMed  CAS  Google Scholar 

  18. Ferguson, D. M. and Kollman, P. A. (1991) Can the Lennard-Jones 6–12 function replace the 10–12 form in molecular mechanics calculations. J. Comp. Chem. 12, 620–627.

    Article  CAS  Google Scholar 

  19. Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Györgyi, A. G., and Cohen, C. (1999) Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470.

    Article  PubMed  CAS  Google Scholar 

  20. Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am Chem. Soc. 118, 11,225–11,236.

    Article  CAS  Google Scholar 

  21. Weiser, J., Shenkin, P. S., and Still, W. C. (1999) Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas. J. Comput. Chem. 20, 688–703.

    Article  CAS  Google Scholar 

  22. Kolossvary, I. and Guida, W. C. (1999) Low-mode conformational search elucidated: application to C39H80 and flexible docking of 9-deazaguanine inhibitors into PNP. J. Comp. Chem. 20, 1671–1684.

    Article  CAS  Google Scholar 

  23. Eisenberg, E. and Greene, L. E. (1980) The relation of muscle biochemistry to muscle physiology. Annu. Rev. Physiol. 42, 293–309.

    Article  PubMed  CAS  Google Scholar 

  24. Taylor, E. W. (1991) Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J. Biol. Chem. 266, 294–302.

    PubMed  CAS  Google Scholar 

  25. Andreev, O. A., Andreeva, A. L., Markin, V. S., and Borejdo, J. (1993) Two different rigor complexes of myosin subfragment 1 and actin. Biochemistry 32, 12,046–12,053.

    Article  CAS  Google Scholar 

  26. Walker, M., Zhang, X. Z., Jiang, W., Trinick, J., and White, H. D. (1999) Observation of transient disorder during myosin subfragment-1 binding to actin by stopped-flow fluorescence and millisecond time resolution electron cryomicroscopy: evidence that the start of the crossbridge power stroke in muscle has variable geometry. Proc. Natl. Acad. Sci USA 96, 465–470.

    Article  PubMed  CAS  Google Scholar 

  27. Kouyama, T. and Mihashi, K. (1981) Fluorimetry study of N-(1-pyrenyl) iodoacetamidelabelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur. J. Biochem. 114, 33–38.

    Article  PubMed  CAS  Google Scholar 

  28. Diaz Banos, F. G. Bordas, J., Lowy, J., and Svensson, A. (1996) Small segmental rearrangements in the myosin head can explain force generation in muscle. Biophys. J. 71, 576–589.

    Article  PubMed  CAS  Google Scholar 

  29. Knetsch, M. L., Uyeda, T. Q., and Manstein, D. J. (1999) Disturbed communication between actin- and nucleotide-binding sites in a myosin II with truncated 50/20-kDa junction. J. Biol. Chem. 274, 20,133–20,138.

    Article  CAS  Google Scholar 

  30. Sasaki, N., Ohkura, R., and Sutoh, K. (2000) Insertion or deletion of a single residue in the strut sequence of Dictyostelium myosin II abolishes strong binding to actin. J. Biol. Chem. 275, 38,70–38,709.

    Google Scholar 

  31. Makhatadze, G. I. and Privalov, P. L. (1990) Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J. Mol. Biol. 213, 375–384.

    Article  PubMed  CAS  Google Scholar 

  32. Bertrand, R., Derancourt, J., and Kassab, R. (2000) Fluorescence characterization of structural transitions at the strong actin binding motif in skeletal myosin affinity labeled at cysteine 540 with novel spectroscopic cysteaminyl mixed disulfides. Biochemistry 39, 14,626–14,637.

    Article  CAS  Google Scholar 

  33. Ajtai, K., Garamszegi, S. P., Park, S., Velazquez Dones, A. L., and Burghardt, T. P. (2001) Structural characterization of beta-cardiac myosin subfragment 1 in solution. Biochemistry 40, 12,078–12,093.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas D. Root.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Root, D.D. A computational comparison of the atomic models of the actomyosin interface. Cell Biochem Biophys 37, 97–110 (2002). https://doi.org/10.1385/CBB:37:2:097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:37:2:097

Index entries

Navigation