Skip to main content
Log in

Predicted alterations in tertiary structure of the N-terminus of Na+/K+-ATPase α-subunit caused by phosphorylation or acidic replacement of the PKC phosphorylation site Ser-23

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The protein kinase C (PKC)-mediated phosphorylation of the Na+/K+-ATPase α-subunit has been shown to play an important role in regulation of the Na+/K+-ATPase activity. In the rat α1-subunit, phosphorylation occurs at Ser-23 and results in inhibition of the transport function of the Na+/K+-ATPase, which is mimicked by replacing the Ser-23 by the negatively charged glutamic acid or by aspartic acid. Using comparative molecular modeling, we investigated whether phosphorylation or acidic replacement at position 23 causes a dramatic change in the molecular electrostatic potential at position 23 as a result of insertion of a negative charge of the phosphoryl group or Glu per se, or whether, alternatively, the modification causes larger-scale conformational changes in the N-terminus of the α-subunit. The results predict a considerable conformational change of the 30-residue stretch around Ser-23 when mutated to the residues carrying a net negative charge or being phosphorylated. The structural rearrangements occur within the N-terminal helix-loop-helix motif with a set of charged residues. This motif has structural homology with one in the Ca2+-ATPase and may form a function-related structural site in the P-type ATPases. Comparative molecular modeling indicates a lengthening of the interhelical loop and an order-to-disorder transition by disrupting a helix at position 23 because of posphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Therien, A. G. and Blostein, R. (2000) Mechanisms of sodium pump regulation. Am. J. Physiol Cell Phys. 279, C541-C566.

    CAS  Google Scholar 

  2. Bertorello, A. M., Aperia, A., Walaas, S. I., Nairn, A. C., and Greengard, P. (1991) Phosphorylation of the catalytic subunit of Na+, K+-ATPase inhibits the activity of the enzyme. Proc. Natl. Acad. Sci. USA 88, 11,359–11,362.

    Article  CAS  Google Scholar 

  3. Vasilets, L. A. (1997) Diversity of regulatory phosphorylation of the Na+/K+-ATPase from mammalian kidneys and Xenopus oocytes by protein kinases. Characterisation of the phosphorylation site for PKC. Cell. Physiol. Biochem. 7, 1–18.

    Article  CAS  Google Scholar 

  4. Vasilets, L. A. (2002) Mechanisms of short-term regulation of the Na+/K+-ATPase by protein kinases. Biol. Membr., 19, 77–82.

    CAS  Google Scholar 

  5. Feschenko, M. S. and Sweadner, K. J. (1995) Structural basis for species-specific differences in the phosphorylation of Na+, K+-ATPase by protein kinase C. J. Biol. Chem. 270, 14,072–14,077.

    CAS  Google Scholar 

  6. Logvinenko, N. S., Dulubova, I., Fedosova, N., Larsson, S. H., Nairn, A. C., Esmann, M., et al. (1996) Phosphorylation by protein kinase C of serine-23 of the α1 subunit of rat Na+, K+-ATPase affects its conformational equilibrium. Proc. Natl. Acad. Sci. USA 93, 9132–9137.

    Article  PubMed  CAS  Google Scholar 

  7. Vasilets, L. A., Spielman, A., and Schwarz, W. (2002) S23E mutation of the PKC phosphorylation site of the α-subunit of Na,K-ATPase leads to increase of surface expression of pumps and reduction of the transport rate. Pflügers Arch. 443, S283.

    Google Scholar 

  8. Vasilets, L. A., Postina, R., and Kirichenko, S. N. (1999) Mutation of Ser-23 of the α1 subunit of the rat Na+/K+-ATPase to negatively charged amino acid residues mimic the functional effect of PKC-mediated phosphorylation. FEBS Lett. 455, 8–12.

    Article  PubMed  CAS  Google Scholar 

  9. Vasilets, L. A., Ohta, T., Noguchi, S., Kawamura, M., and Schwarz, W. (1993) Voltage-dependent inhibition of the sodium pump by external sodium: species differences and possible role of the N-terminus of the α-subunit. Eur. Biophys. J. 21, 433–443.

    Article  PubMed  CAS  Google Scholar 

  10. Vasilets, L. A., Omay, H., Ohta, T., Noguchi, S., Kawamura, M., and Schwarz, W. (1991) Stimulation of the Na+/K+ pump by external [K+] is regulated by voltage-dependent gating. J. Biol. Chem. 266, 16,285–16,288.

    CAS  Google Scholar 

  11. Wierzbicki, W. and Blostein, R. (1993) The amino-terminal segment of the catalytic subunit of kidney Na,K-ATPase regulates the potassium deocclusion pathway of the reaction cycle. Proc. Natl. Acad. Sci. USA 90, 70–74.

    Article  PubMed  CAS  Google Scholar 

  12. Daly, S. E., Lane, L. K., and Blostein, R. (1996) Structure/function analysis of the amino-terminal region of the α-1 and α-2 subunits of Na,K-ATPase. J. Biol. Chem. 271, 23,683–23,689.

    CAS  Google Scholar 

  13. Vasilets, L. A., Wu, C. H., Wachter, E., and Schwarz, W. (2000) Gating role of the N-terminus of α-subunit of the Na+,K+-ATPase converted into a channel by palytoxin, in Control and Diseases of Sodium Transport Proteins and Channels. (Suketa, Y., ed.), Elsevier, Amsterdam, pp. 23–26.

    Google Scholar 

  14. Vasilets, L. A., Brandt, W., Postina, R., Kirichenko, S., and Anders, A. (2000) Molecular mechanisms of PKC-mediated inhibition of cation transport by the Na+/K+-ATPase: site-directed mutagenesis and molecular modelling studies. Pflügers Arch. 439, R321.

    Article  Google Scholar 

  15. Vasilets, L. A., Brandt, W., Postina, R., Fotis, H., Tatjanenko, L. V., Gvozdev, A. R., et al. (2000) Molecular mechanisms of covalent regulation of the Na+/K+-ATPase by protein kinases, in The Sodium Pump (Taniguchi, K. and Kaya, S., eds.), Elsevier, Amsterdam, pp. 507–572.

    Google Scholar 

  16. http://scop.mrc-lmb.cam.ac.uk/scop/aln.cgi

  17. Altshul, S. F., Madden, T. L., Schäffer, A. A., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  Google Scholar 

  18. Zhang, J. and Madden, T. L. (1997) PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 7, 649–656.

    PubMed  CAS  Google Scholar 

  19. Pearson, W. R. and Lipman, D. J. (1988) Improved tools for biological sequence analysis. Proc. Natl. Acad. Sci. USA 85, 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  20. Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASP and FASTA. Methods Enzymol. 183, 63–98.

    Article  PubMed  CAS  Google Scholar 

  21. Tripos, Inc. (1998) SYBYL 6.5 Tripos Inc., St. Louis, Mo.

    Google Scholar 

  22. Clark, M., Cramer, R. D. III, and Van Opendbosch, N. (1989) Validation of the general purpose TRIPOS field. J. Comput. Chem. 10, 982–1012.

    Article  CAS  Google Scholar 

  23. Gasteiger, J. and Marsili, M. (1980) Iterative partial equalization of orbital electronegativity, a rapid access to atomic charges. Tetrahedron 36, 3219–3238.

    Article  CAS  Google Scholar 

  24. Laskowski, R. A., McArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereometrical quality of protein structure. J. Appl. Cryst. 26, 286–289.

    Article  Google Scholar 

  25. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  26. Thornton, J. M. (2001) From genome to function. Science 292, 2095–2097.

    Article  PubMed  CAS  Google Scholar 

  27. Gaudet, R., Savage, J. R., McLaughlin, J. N., Willardson, B. M., and Sigler, P. B. (1999) A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Mol. Cell 3, 649–660.

    Article  PubMed  CAS  Google Scholar 

  28. Dean, A. M. and Koshland, D. E. (1990) Electrostatic and steric contributions to regulation at the active site of isocitrate dehydrogenase. Science 249, 1044–1046.

    Article  PubMed  CAS  Google Scholar 

  29. Antz, C., Geyer, M., Fakler, B., Schott, M., Guy, H. R., Frank, R., et al. (1997) NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 385, 272–275.

    Article  PubMed  CAS  Google Scholar 

  30. Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405, 647–655.

    Article  PubMed  CAS  Google Scholar 

  31. Toyoshima, C. and Nomura, H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611.

    Article  PubMed  CAS  Google Scholar 

  32. Sweadner, K. J. and Donnet, K. (2001) Structural similarities of Na, K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem. J. 356, 685–704.

    Article  PubMed  CAS  Google Scholar 

  33. Hebert, H., Purhonen, P., Vorum, H., Thomsen, K., and Maunsbach, A. B. (2001) Three-dimensional structure of renal Na, K-ATPase from cryo-electron microscopy of two-dimensional crystals. J. Mol. Biol. 314, 479–494.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa A. Vasilets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, W., Anders, A. & Vasilets, L.A. Predicted alterations in tertiary structure of the N-terminus of Na+/K+-ATPase α-subunit caused by phosphorylation or acidic replacement of the PKC phosphorylation site Ser-23. Cell Biochem Biophys 37, 83–95 (2002). https://doi.org/10.1385/CBB:37:2:083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:37:2:083

Index Entries

Navigation