Skip to main content

Regulation of the NPT gene by a naturally occurring antisense transcript

Abstract

The epithelial Na/Pi cotransporter (NaPi-II) is instrumental in maintaining phosphate (Pi) homeostasis in vertebrates. Hormones and metabolic factors (PTH, Pi availability) that acutely influence renal Pi excretion have been demonstrated to target NaPi-II expression. Upon stimulation, newly synthesized transporter molecules become integrated into the brush-border membrane to increase the V max of Pi uptake; reduction of Pi reabsorption is achieved by endocytosis of NaPi-II followed by lysosomal degradation of the protein.

The long-term regulation of the protein is less well studied. Only recently, regulatory elements for vitamin D3 and Pi have been identified in the promoter region of the npt gene. However, signaling pathways leading to the activation of these regulatory sequences need to be established. Other reports suggested messenger RNA stability to play a role in the medium range regulation of NaPi-II expression.

Recent findings in our laboratory added to the complex picture of npt gene regulation. We have identified npt-related endogenous antisense transcripts from mouse, zebrafish, and winter flounder. The two fish transcripts have been cloned and characterized; the mouse homolog has only very recently been detected. The transcripts are devoid of an open reading frame and appear in different splice forms. The evolutionary conservation of bidirectional transcription of the npt gene implies a regulatory function for the antisense transcript.

In order to test the functional consequences of bidirectional transcription, we coexpressed sense and the antisense transcripts from zebrafish in Xenopus oocytes. Pi transport activity was reduced as a result of the presence of antisense RNA. Re-extraction of the RNA from injected oocytes followed by Northern blot revealed that the coexpression had no significant effect on the stability of either transcript. We concluded that the antisense mRNA interfered with the translation of the transporter if coexpressed in the Xenopus system. However, the regulatory mechanism(s) involving the npt-related antisense transcript is expected to be much more complicated in vivo, (i.e., requiring supplementary factors like double-stranded RNA recognizing proteins or specific RNases). It is planned to test this hypothesis by a transgenic zebrafish approach and/or knockout mice.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lipman, D. J. (1997) Making (anti)sense of noncoding sequence conservation. Nucleic Acids Res. 25, 3580–3583.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Murer, H., Hernando, N., Forster, I., and Biber, J. (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol. Rev. 80, 1373–1409.

    PubMed  CAS  Google Scholar 

  3. 3.

    Werner, A. and Kinne, R. K. H. (2001) The evolution of the Na/Pi contransport system type II (Napi-II). Am. J. Physiol. 280, R301-R312.

    CAS  Google Scholar 

  4. 4.

    Hilfiker, H., Hattenhauer, O., Traebert, M., Forster, I., Murer, H., and Biber, J. (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc. Natl. Acad. Sci. USA 95, 14,564–14,569.

    Article  CAS  Google Scholar 

  5. 5.

    Feild, J. A., Zhang, L., Brun, K. A., Brooks, D. P., and Edwards, R. M. (1999) Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem. Biophys. Res. Commun. 258, 578–582.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Beck, L., Karaplis, A. C., Amizuka, N., Hewson, A. S., Ozawa, H., and Tenenhouse, H. S. (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl. Acad. Sci. USA 95, 5372–5377.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Werner, A., Murer, H., and Kinne, R. K. (1994) Cloning and expression of a renal Na-Pi contransport system from flounder. Am. J. Physiol. 267, F311-F317.

    PubMed  CAS  Google Scholar 

  8. 8.

    Huelseweh, B., Kohl, B., Hentschel, H., Kinne, R. K. H., and Werner, A. (1998) A translated antisense transcript Na/phosphate cotransport. Biochem. J. 332, 483–489.

    PubMed  CAS  Google Scholar 

  9. 9.

    Nalbant, P., Böhmer, C., Dehmelt, L., Wehner, F., and Werner, A. (1999) Functional characterization of a Na/Pi cotransporter (NaPi-II) from zebrafish and identification of related transcripts. J. Physiol. 520, 79–89.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Murashov, A. K. and Wolgemuth, D. J. (1996) Sense and antisense transcripts of the develop-mentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain. Brain Res. Mol. Brain Res. 37, 85–95.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Tommasi, S. and Pfeifer, G. P. (1999) In vivo structure of two divergent promoters at the human PCNA locus. Synthesis of antisense RNA and S phase-dependent binding of E2F complexes in intron 1. J. Biol. Chem. 274, 27,829–27,838.

    Article  CAS  Google Scholar 

  12. 12.

    Sierakowska, H., Sambade, M. J., Schumperli, D., and Kole, R. (1999) Sensitivity of splice sites to antisense oligonucleotides in vivo. RNA 5, 369–377.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Gorman, L., Mercatante, D. R., and Kole, R. (2000) Restoration of correct splicing of thalassemic beta-globin pre-mRNA by modified U1 snRNAs. J. Biol. Chem. 275, 35,914–35,919.

    Article  CAS  Google Scholar 

  14. 14.

    Friedman, K. J., Kole, J., Cohn, J. A., Knowles, M. R., Silverman, L. M., and Kole, R. (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J. Biol. Chem. 274, 36,193–36,199.

    Article  CAS  Google Scholar 

  15. 15.

    Mann, C. J., Honeyman, K., Cheng, A. J., Ly, T., Lloyd, F., Fletcher, S., et al. (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl. Acad. Sci. USA 98, 42–47.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Hartmann, C. M., Hewson, A. S., Kos, C. H., Hilfiker, H., Soumounou, Y., Murer, H., et al. (1996) Structure of murine and human renal type II Na+-phosphate cotransporter genes (Npt2 and NPT2). Proc. Natl. Acad. Sci. USA 93, 7409–7414.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Collins, J. F. and Ghishan, F. K. (1994) Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na+/P(i)) transporter in the control and hypophosphatemic mouse. FASEB J. 8, 862–868.

    PubMed  CAS  Google Scholar 

  18. 18.

    Chelly, J., Concordet, J. P., Kaplan, J. C., and Kahn, A. (1989) Illegitimate transcription: transcription of any gene in any cell type. Proc. Natl. Acad. Sci. USA 86, 2617–2621.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Dolnick, B. J. (1997) Naturally occurring antisense RNA. Pharmacol. Ther. 75, 179–184.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Knee, R. and Murphy, P. R. (1997) Regulation of gene expression by natural antisense RNA transcripts. Neurochem. Int. 31, 379–392.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Vanhee-Brossollet, C. and Vaquero, C. (1998) Do natural antisense transcripts make sense in eukaryotes? Gene 211, 1–9.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., et al. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Chamberlain, S. J. and Brannan, C. I. (2001) The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ubera antisense transcript but represses paternal Ube3a. Genomics 73, 316–322.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Cooper, P. R., Smilinich, N. J., Day, C. D., Nowak, N. J., Reid, L. H., Pearsall, R. S., et al. (1998) Divergently transcribed overlapping genes expressed in liver and kidney and located in the 11p15.5 imprinted domain. Genomics 49, 38–51.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Hastings, M. L., Ingle, H. A., Lazar, M. A., and Munroe, S. H. (2000) Post-transcriptional regulation of thyroid hormone receptor expression by cis-acting sequences and a naturally occurring antisense RNA. J. Biol. Chem. 275, 11,507–11,513.

    Article  CAS  Google Scholar 

  28. 28.

    Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. clegans heterochronic gene lin-4 encodes small RNAs with antisense comple-mentarity to lin-14. Cell 75, 843–854.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Lee, J. T., Davidow, L. S., and Warshawsky, D. (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet. 21, 400–404.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Batshake, B. and Sundelin, J. (1996) The mouse genes for the EP1 prostanoid receptor and the PKN protein kinase overlap. Biochem. Biophys. Res. Commun. 217, 70–66.

    Article  Google Scholar 

  31. 31.

    Kimelman, D. and Kirschner, M. W. (1989) An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell 59, 687–696.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Lerner, A., D'Adamio, L., Diener, A. C., Clayton, L. K., and Reinherz, E. L. (1993) CD3 zeta/eta/theta locus is colinear with and transcribed antisense to the gene encoding the transcription factor Oct-1. J. Immunol. 151, 3152–3162.

    PubMed  CAS  Google Scholar 

  33. 33.

    Sureau, A., Soret, J., Guyon, C., Gaillard, C., Dumon, S., Keller, M., et al. (1997) Characterization of multiple alternative RNAs resulting from antisense transcription of the PR264/SC35 splicing factor gene. Nucleic Acids Res. 25, 4513–4522.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Thompson-Jager, S., and Domdey, H. (1990) The intron of the yeast actin gene contains the promoter for an antisense RNA. Curr. Genet. 17, 269–273.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Farrell, C. M. and Lukens, L. N. (1995) Naturally occurring antisense transcripts are present in chick embryo chondrocytes simultaneously with the down-regulation of the alpha 1 (I) collagen gene. J. Biol. Chem. 270, 3400–3408.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    McGuinness, T., Porteus, M. H., Smiga, S., Bulfone, A., Kingsley, C., Qiu, M., et al. (1996) Sequence, organization, and transcription of the Dlx-1 and Dlx-2 locus. Genomics 35, 473–485.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Skeiky, Y. A. and Iatrou, K. (1990) Silkmoth chorion antisense RNA. Structural characterization, developmental regulation and evolutionary conservation. J. Mol. Biol. 213, 53–66.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Hildebrandt, M. and Nellen, W. (1992) Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. Cell 69, 197–204.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Adelman, J. P., Bond, C. T., Douglass, J., and Herbert, E. (1987) Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 235, 1514–1517.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Sjakste, N., Iarovaia, O. V., Razin, S. V., Linares-Cruz, G., Sjakste, T., Le Gac, V., et al. (2000) A novel gene is transcribed in the chicken alphaglobin gene domain in the direction opposite to the globin genes. Mol. Gen. Genet. 262, 1012–1021.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Volloch, V., Schweitzer, B., and Rits, S. (1996) Antisense globin RNA in mouse erythroid tissues: structure, origin, and possible function. Proc. Natl. Acad. Sci. USA 93, 2475–2481.

    Article  Google Scholar 

  42. 42.

    Bedford, M., Arman, E., Orr-Urtreger, A., and Lonai, P. (1995) Analysis of the Hoxd-3 gene: structure and localization of its sense and natural antisense transcripts. DNA Cell Biol. 14, 295–304.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Hsieh-Li, H. M., Witte, D. P., Weinstein, M., Branford, W., Li, H., Small, K., et al. (1995) Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 121, 1373–1385.

    PubMed  CAS  Google Scholar 

  44. 44.

    Thrash-Bingham, C. A. and Tartof, K. D. (1999) aHIF: a natural antisense transcript overex-pressed in human renal cancer and during hypoxia. J. Natl. Cancer Inst. 91, 143–151.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Nemes, J. P., Benzow, K. A., Moseley, M. L., Ranum, L. P., and Koob, M. D. (2000) The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum. Mol. Genet. 9, 1543–1551.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Spicer, D. B. and Sonenshein, G. E. (1992) An antisense promoter of the murine c-myc gene is localized within intron 2. Mol. Cell. Biol. 12, 1324–1329.

    PubMed  CAS  Google Scholar 

  47. 47.

    Armstrong, B. C. and Krystal, G. W. (1992) Isolation and characterization of complementary DNA for N-cym, a gene encoded by the DNA strand opposite to N-myc. Cell Growth Differ. 3, 385–390.

    PubMed  CAS  Google Scholar 

  48. 48.

    Luther, H. P., Podlowski, S., Hetzer, R., and Baumann, G. (2001) Analysis of sense and naturally occurring antisense transcripts of myosin heavy chain in the human myocardium. J. Cell Biochem. 80, 596–605.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Ritter, O., Haase, H., Schulte, H. D., Lange, P. E., and Morano, I. (1999) Remodeling of the hyper-trophied human myocardium by cardiac bHLH transcription factors. J. Cell Biochem. 74, 551–561.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Khochbin, S. and Lawrence, J. J. (1989) An antisense RNA involved in p53 mRNA maturation in murine erythroleukemia cells induced to differentiate. EMBO J. 8, 4107–4114.

    PubMed  CAS  Google Scholar 

  51. 51.

    Zavadil, J., Svoboda, P., Liang, H., Kottickal, L. V., and Nagarajan, L. (1999) An antisense transcript to SMAD5 expressed in fetal and tumor tissues. Biochem. Biophys. Res. Commun. 255, 668–672.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Coker, R. K., Laurent, G. J., Dabbagh, K., Dawson, J., and McAnulty, R. J. (1998) A novel transforming growth factor beta2 antisense transcript in mammalian lung. Biochem. J. 332, 297–301.

    PubMed  CAS  Google Scholar 

  53. 53.

    Potts, J. D., Vincent, E. B., Runyan, R. B., and Weeks, D. L. (1992) Sense and antisense TGF beta 3 mRNA levels correlate with cardiac valve induction. Dev. Dynam. 193, 340–345.

    CAS  Google Scholar 

  54. 54.

    Shi, M., Yan, X., Ryan, D. H., and Harris, R. B. (2000) Identification of urocortin mRNA antisense transcripts in rat tissue. Brain Res. Bull. 53, 317–324.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Rene, P., Lenne, F., Ventura, M. sA., Bertagna, X., and de Keyzer, Y. (2000) Nucleotide sequence and structural organization of the human vasopressin pituitary receptor (V3) gene. Gene 241, 57–64.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Blin-Wakkach, C., Lezot, F., Ghoul-Mazgar, S., Hotton, D., Monteiro, S., Teillaud, C., et al. (2001) Endogenous Msx1 antisense transcript: in vivo and in vitro evidences, structure, and-potential involvement in skeleton development in mammals. Proc. Natl. Acad. Sci. USA 98, 7336–7341.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Werner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Werner, A., Preston-Fayers, K., Dehmelt, L. et al. Regulation of the NPT gene by a naturally occurring antisense transcript. Cell Biochem Biophys 36, 241–252 (2002). https://doi.org/10.1385/CBB:36:2-3:241

Download citation

Index Entries

  • Antisense RNA
  • gene regulation
  • phosphate transport
  • ectopic gene expression