Skip to main content
Log in

Replication-related activities establish cohesion between sister chromatids

  • Orginal Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Replicated sister chromatids are held together from their synthesis in S phase to their separation in anaphase. The process of sister chromatid cohesion is essential for the proper segregation of chromosomes in eukaroytic cells. Recent studies in Saccharomyces cerevisiae have advanced our understanding of how sister chromatid cohesion is established, maintained, and dissolved during the cell cycle. Historical observations have suggested that establishment of cohesion is roughly coincident with replication fork passage. Emerging evidence now indicates that replication fork components, such as PCNA, a novel DNA polymerase, Trf4p/Pol σ (formerly Trf4p/Pol κ), and a modified clamp-loader complex, actively participate in the process of the cohesion establishment. Here, we review the molecular events in the chromosome cycle with respect to cohesion. Failure of sister chromatid cohesion results in the aneuploidy characteristic of many birth defects and tumors in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guacci, V., Hogan, E., and Koshland, D. (1994) Chromosome condensation and sister chromatid pairing in budding yeas. J. Cell. Biol. 125, 517–530.

    Article  PubMed  CAS  Google Scholar 

  2. Selig, S., Okumura, K., Ward, D. C., and Cedar, H. (1992) Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225.

    PubMed  CAS  Google Scholar 

  3. Sumner, A. T. (1991) Scanning electron microscopy of mammalian chromosomes from prophase to telophase. Chromosoma 100, 410–418.

    Article  PubMed  CAS  Google Scholar 

  4. Rieder, C. L. (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 79, 1–58.

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka, K., Yonekawa, T., Kawasaki, Y., Kai, M., Furuya, K., Iwasaki, M., et al. (2000) Fission yeast eso1p is required for establishing sister chromatid cohesion during S phase. Mol. Cell. Biol. 20, 3459–3469.

    Article  PubMed  CAS  Google Scholar 

  6. McNeill, P. A. and Berns, M. W. (1981) Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. J. Cell. Biol. 88, 543–553.

    Article  PubMed  CAS  Google Scholar 

  7. Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L., and Salmon, E. D. (1986) Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell. Biol. 103, 581–591.

    Article  PubMed  CAS  Google Scholar 

  8. Skibbens, R. V., Rieder, C. L., and Salmon, E. D. (1995) Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. J. Cell. Sci. 108, 2537–2548.

    PubMed  CAS  Google Scholar 

  9. Boy de la Tour, E. and Laemmli, U. K. (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55 937–944.

    Article  PubMed  CAS  Google Scholar 

  10. Guacci, V., Koshland, D. and Strunnikov, A. (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae [see comments]. Cell 91, 47–57.

    Article  PubMed  CAS  Google Scholar 

  11. Rieder, C. L., Cole, R. W., Khodjakov, A., and Sluder, G. (1995) The checkpoint delaying anaphase in response to chromosome monoori-entation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell. Biol. 130, 941–948.

    Article  PubMed  CAS  Google Scholar 

  12. Hoyt, M. A., Trotis, L., and Roberts, B. T. (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtuble function. Cell 66, 507–517.

    Article  PubMed  CAS  Google Scholar 

  13. Li, R. and Murray, A. W. (1991) Feedback control of mitosis in budding yeast. Cell 66, 519–531.

    Article  PubMed  CAS  Google Scholar 

  14. Cohen-Fix, O., Peters, J. M., Kirschner, M. W., and Koshland, D. (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent, degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093.

    Article  PubMed  CAS  Google Scholar 

  15. Nicklas, R. B., Ward, S. C., and Gorbsky, G. J. (1995) Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J. Cell. Biol. 130, 929–939.

    Article  PubMed  CAS  Google Scholar 

  16. Gardner, R. D. and Burke, D. J. (2000) The spindle chekpoint: two transitions, two pathways. Trends Cell Biol. 10, 154–158.

    Article  PubMed  CAS  Google Scholar 

  17. Hirano, T. and Mitchison, T.J. (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449–458.

    Article  PubMed  CAS  Google Scholar 

  18. Koshland, D. E. and Guacci, V. (2000) Sister chromatid cohesion: the beginning of a long and beautiful relationship. Curr. Opin. Cell. Biol. 12, 297–301.

    Article  PubMed  CAS  Google Scholar 

  19. Nasmyth, K., Peters, J. M., and Uhlmann, F. (2000) Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1385.

    Article  PubMed  CAS  Google Scholar 

  20. Cozzarelli, N. R. and Wang, J. C. (1990) DNA topology and its biological effects.

  21. DiNardo, S., Voelkel, K., and Sternglanz, R. (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA 81, 2616–2620.

    Article  PubMed  CAS  Google Scholar 

  22. Holm, C., Goto, T., Wang, J. C., and Botstein, D. (1985) DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41, 553–563.

    Article  PubMed  CAS  Google Scholar 

  23. Koshland, D. and Hartwell, L. H. (1987) The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science 238, 1713–1716.

    Article  PubMed  CAS  Google Scholar 

  24. Downes, C. S., Mullinger, A. M., and Johnson, R. T. (1991) Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc. Natl. Acad. Sci. USA 88, 8895–8899.

    Article  PubMed  CAS  Google Scholar 

  25. Holloway, S. L., Glotzer, M., King, R. W., and Murray, A. W. (1993) Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393–1402.

    Article  PubMed  CAS  Google Scholar 

  26. Surana, U., Amon, A., Dowzer, C., McGrew, J., Byers, B., and Nasmyth, K. (1993) Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12, 1969–1978.

    PubMed  CAS  Google Scholar 

  27. Irniger, S., Piatti, S., Michaelis, C., and Nasmyth, K. (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81, 269–278. erratum: Cell 93(3), 487 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. King, R. W., Peters, J. M., Tugendreich, S., Rolfe, M., Hieter, P., and Kirschner, M. W. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin tocyclin B. Cell 81, 279–288.

    Article  PubMed  CAS  Google Scholar 

  29. Straight, A. F., Belmont, A. S., Robinett, C. C., and Murray, A. W. (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608.

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto, A., Guacci, V., and Koshland, D. (1996) Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J. Cell. Biol. 133, 85–97.

    Article  PubMed  CAS  Google Scholar 

  31. Funabiki, H., Kumada, K., and Yanagida, M. (1996) Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 15, 6617–6628.

    PubMed  CAS  Google Scholar 

  32. Funabiki, H., Yamano, H., Nagao, K., Tanaka, H., Yasuda, H., Hunt, T., et al. (1997) Fission yeast Cut2 required for anaphase has two destruction boxes. EMBO J. 16, 5977–5987.

    Article  PubMed  CAS  Google Scholar 

  33. Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M., and Nasmyth, K. (1998) An Esp1/Pds1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  34. Hwang, L. H., Lau, L. F., Smith, D. L., Mistrot, C. A., Hardwick, K. G., Hwang, E. S., et al. (1998) Budding yeast Cdc20: a target of the spindle checkpoint [see comments]. Science 279, 1041–1044.

    Article  PubMed  CAS  Google Scholar 

  35. Michaelis, C., Ciosk, R., and Nasmyth, K. (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45.

    Article  PubMed  CAS  Google Scholar 

  36. Strunnikov, A. V., Hogan, E., and Koshland, D. (1995) SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 9, 587–599.

    Article  PubMed  CAS  Google Scholar 

  37. Hirano, T. (2000) Chromosome cohesion, condensation separation. Annu. Rev. Biochem. 69, 115–144.

    Article  PubMed  CAS  Google Scholar 

  38. Losada, A., Hirano, M., and Hirano, T. (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12, 1986–1997.

    PubMed  CAS  Google Scholar 

  39. Tomonaga, T., Nagao, K., Kawasaki, Y., Furuya, K., Murakami, A., Morishita, J., et al. (2000) Characterization of fission yeast cohesin: essential anaphase proteolysis of rad21 phosphorylated in the S phase. Genes Dev. 14, 2757–2770.

    Article  PubMed  CAS  Google Scholar 

  40. Toth, A., Ciosk, R., Uhlmann, F., Galova, M., Schleiffer, A., and Nasmyth, K. (1999) Yeast Cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohension between sister chromatids during DNA replication. Genes Dev. 13, 320–333.

    PubMed  CAS  Google Scholar 

  41. Losada, A., Yokochi, T., Kobayashi, R., and Hirano, T. (2000) Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J. Cell. Biol. 150, 405–416.

    Article  PubMed  CAS  Google Scholar 

  42. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H., and Peters, J. M. (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell. Biol. 151, 749–762.

    Article  PubMed  CAS  Google Scholar 

  43. Waizenegger, I. C., Hauf, S., Meinke, A., and Peters, J. M. (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410.

    Article  PubMed  CAS  Google Scholar 

  44. Jessberger, R., Frei, C., and Gasser, S. M. (1998) Chromosome dynamics—the Smc protein family. Curr. Opin. Genet. Dev. 8, 254–259.

    Article  PubMed  CAS  Google Scholar 

  45. melby, T. E., Ciampaglio, C. N., Briscoe, G., and Erickson, H. P. (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell. Biol. 142, 1595–1604.

    Article  PubMed  CAS  Google Scholar 

  46. Hopfner, K. P., Karcher, A., Shin, D. S., Craig, L., Arthur, L. M., Carney, J. P., et al. (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800.

    Article  PubMed  CAS  Google Scholar 

  47. Akhmedov, A. T., Frei, C., Tsai-Pflugfelder, M., Kemper, B., Gasser, S. M., and Jessberger, R. (1998) Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J. Biol. Chem. 273, 24,088–24,094.

    Article  CAS  Google Scholar 

  48. Losada, A. and Hirano, T. (2001) Intermolecular DNA interactions stimulated by the cohesin complex in vitro. Implications for sister chromatid cohesion. Curr. Biol. 11, 268–272.

    Article  PubMed  CAS  Google Scholar 

  49. Uhlmann, F., Lottspeich, F., and Nasmyth, K. (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1 [see comments] Nature 400, 37–42.

    Article  PubMed  CAS  Google Scholar 

  50. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V., and Nasmyth, K. (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386.

    Article  PubMed  CAS  Google Scholar 

  51. Hartman, T., Stead, K., Koshland, D., and Guacci, V. (2000) Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell. Biol. 151, 613–626.

    Article  PubMed  CAS  Google Scholar 

  52. van Heemst, D., James, F., Poggeler, S., Berteaux-Lecellier, V., and Zickler, D. (1999) Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meitotic programs. Cell 98, 261–271.

    Article  PubMed  Google Scholar 

  53. Denison, S. H., Kafer, E., and May, G. S. (1993) Mutation in the bimD gene of Aspergillus nidulans confers a conditional mitotic block and sensitivity to DNA damaging agents. Genetics 134, 1085–1096.

    PubMed  CAS  Google Scholar 

  54. Megee, P. C., Mistrot, C., Guacci, V., and Koshland, D. (1999) The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4, 445–50.

    Article  PubMed  CAS  Google Scholar 

  55. Blat, Y. and Kleckner, N. (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region, Cell 98, 249–259.

    Article  PubMed  CAS  Google Scholar 

  56. Laloraya, S., Guacci, V., and Koshland, D. (2000) Chromosomal addresses of the cohesin component Mcd1p. J. Cell. Biol. 151, 1047–1056.

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka, T., Cosma, M. P., Wirth, K., and Nasmyth, K. (1999) Identification of cohesin association sites at centromeres and along chromsome arms. Cell 98, 847–858.

    Article  PubMed  CAS  Google Scholar 

  58. Ciosk, R., Shirayama, M., Shevchenko, A., Tanaka, T., Toth, A., Shevchenko, A., et al. (2000) Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243–254.

    Article  PubMed  CAS  Google Scholar 

  59. Jones, S. and Sgouros, J. (2001) The cohesin complex: sequence homologies, interaction networks and shared motifs. Genome Biol. 2.

  60. Uhlmann, F. and Nasmyth, K. (1998) Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  61. Skibbens, R. V., Corson, L. B., Koshland, D., and Hieter, P. (1999) Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13, 307–319.

    PubMed  CAS  Google Scholar 

  62. Waga, S. and Stillman, B. (1998) The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751.

    Article  PubMed  CAS  Google Scholar 

  63. Skibbens, R. V. (2000) Holding your own: establishing sister chromatid cohesion. Genome Res. 10, 1664–1671.

    Article  PubMed  CAS  Google Scholar 

  64. Wang, Z., Castano, I. B., De Las Penas, A., Adams, C., and Christman, M. F. (2000) Polkappa: a DNA polymerase required for sister chromatid cohesion. Science 289, 774–779.

    Article  PubMed  CAS  Google Scholar 

  65. Tanaka, T., Fuchs, J., Loidl, J., and Nasmyth, K. (2000) Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell. Biol. 2, 492–499.

    Article  PubMed  CAS  Google Scholar 

  66. Castaño, I. B., Brzoska, P. M., Sadoff, B. U., Chen, H. Y., and Christman, M. F. (1996B) Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev. 10, 2564–2576.

    Article  PubMed  Google Scholar 

  67. Castaão, I. B., Heath-Pagliuso, S., Sadoff, B. U., Fitzhugh, D. J., and Christman, M. F. (1996A) A novel family of TRF (DNA Topoisomerase I-Related Function) genes required for proper nuclear segregation. Nuclear Acids Res. 24, 2404–2410.

    Article  Google Scholar 

  68. Sadoff, B. U., Heath-Pagliuso, S., Castaño, I. B., Yingfang, Z., Kieff, F. S., and Christman, M. F., (1995) Isolation of Mutants of Saccharomyces cerevisiae requiring DNA topoisomerase I. Genetics 141, 465–479.

    PubMed  CAS  Google Scholar 

  69. Walowsky, C., Fitzhugh, D. J., Castano, I. B., Ju, J. Y., Levin, N. A., and Christman, M. F. (1999) The topoisomerase-related function gene TRF4 affects cellular sensitivity to the antitumor agent camptothecin. J. Biol. Chem. 274, 7302–7308.

    Article  PubMed  CAS  Google Scholar 

  70. Miller, A. M. and Nasmyth, K. A. (1984) Role of DNA replication in the repression of silent mating type loci in yeast. Nature 312, 247–251.

    Article  PubMed  CAS  Google Scholar 

  71. Gerlach, V. L., Aravirid, L., Gotway, G., Schultz, R. A., Koonin, E. V., and Friedberg, E. C. (1999) Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc. Natl. Acad. Sci. USA 96, 11,922–11,927.

    Article  CAS  Google Scholar 

  72. Johnson, R. E., Prakash, S., and Prakash, L. (1999) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Sci. 283, 1001–1004.

    Article  CAS  Google Scholar 

  73. Tsurimoto, T. and Stillmman, B. (1991) Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis. J. Biol. Chem. 266, 1961–1968.

    PubMed  CAS  Google Scholar 

  74. Waga, S. and Stillman, B. (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369, 207–212.

    Article  PubMed  CAS  Google Scholar 

  75. Hanna, J. S., Kroll, E. S., Lundblad, V., and Spencer, F. A. (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21, 3144–3158.

    Article  PubMed  CAS  Google Scholar 

  76. Green, C. M., Erdjument-Bromage, H., Tempst, P., and Lowndes, N. F. (2000) A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10, 39–42; erratum Curr. Biol. 10(4), R171 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Miles, J. and Formosa, T. (1992) Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo. Mol. Cell. Biol. 12, 5724–5735.

    PubMed  CAS  Google Scholar 

  78. Yamamoto, A., Guacci, V., and Koshland, D. (1996) Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell. Biol. 133, 99–110.

    Article  PubMed  CAS  Google Scholar 

  79. Jensen, S., Segal, M., Clarke, D. J., and Reed, S. I. (2001) A novel role of the budding yeast separin Esp1 in anaphase spindle elongation: evidence that proper spindle association of Esp1 is regulated by Pds1. J. Cell. Biol. 152, 27–40.

    Article  PubMed  CAS  Google Scholar 

  80. Zou, H., McGarry, T. J., Bernal, T., and Kirschner, M. W. (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis [see comments]. Science 285, 418–422.

    Article  PubMed  CAS  Google Scholar 

  81. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1997) Genetic instability in colorectal cancers. Nature 386, 623–627.

    Article  PubMed  CAS  Google Scholar 

  82. Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., et al. (1998) Mutations of mitotic checkpoint genes in human cancers [see comments] Nature 392, 300–303.

    Article  PubMed  CAS  Google Scholar 

  83. Weinert, T. A. (1992) Dual cell cycle checkpoints sensitive to chromosome replication and DNA damage in the budding yeast Saccharomyces cerevisiae. Radiat. Res. 132, 141–143.

    Article  PubMed  CAS  Google Scholar 

  84. Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., et al. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679.

    Article  PubMed  CAS  Google Scholar 

  85. Ghiselli, G. and Iozzo, R. V. (2000) Over-expression of Bamacan/SMC3 causes transformation. J. Biol. Chem. 275, 20,235–20,238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Christman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Christman, M.F. Replication-related activities establish cohesion between sister chromatids. Cell Biochem Biophys 35, 289–301 (2001). https://doi.org/10.1385/CBB:35:3:289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:3:289

Index Entries

Navigation