Skip to main content
Log in

Determining the three-dimensional fold of a protein from approximate constraints

A simulation study

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We propose a new approach for calculating the three-dimensional (3D) structure of a protein from distance and dihedral angle constraints derived from experimental data. We suggest that such constraints can be obtained from experiments such as tritium planigraphy, chemical or enzymatic cleavage of the polypeptide chain, paramagnetic perturbation of nuclear magnetic resonance (NMR) spectra, measurement of hydrogen-exchange rates, mutational studies, mass spectrometry, and electron paramagnetic resonance. These can be supplemented with constraints from theoretical prediction of secondary structures and of buried/exposed residues. We report here distance geometry calculations to generate the structures of a test protein Staphylococcal nuclease (STN), and the HIV-1 rev protein (REV) of unknown structure. From the available 3D atomic coordinates of STN, we set up simulated data sets consisting of varying number and quality of constraints, and used our group's Self Correcting Distance Geometry (SECODG) program DIAMOD to generate structures. We could generate the correct tertiary fold from qualitative (approximate) as well as precise distance constraints. The root mean square deviations of backbone atoms from the native structure were in the range of 2.0 Å to 8.3 Å, depending on the number of constraints used. We could also generate the correct fold starting from a subset of atoms that are on the surface and those that are buried. When we used data sets containing a small fraction of incorrect distance constraints, the SECODG technique was able to detect and correct them. In the case of REV, we used a combination of constraints obtained from mutagenic data and structure predictions. DIAMOD generated helix-loop-helix models, which, after four self-correcting cycles, populated one family exclusively. The features of the energy-minimized model are consistent with the available data on REV-RNA interaction. Our method could thus be an attractive alternative for calculating protein 3D structures, especially in cases where the traditional methods of X-ray crystallography and multidimensional NMR spectroscopy have been unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogacheva, E. N., Gol'danskii, V. I., Shishkov A. V., Galkin, A. V., and Baratova, L. A. (1998) Tritium planigraphy: from the accessible surface to the spatial structure of a protein. Proc. Natl. Acad. Sci. USA 95, 2790–2794.

    Article  PubMed  CAS  Google Scholar 

  2. Volynskaya, A. V., Kasumov, E. A., Bogascheva, E. N., Shishkov, A. V., and Goldanskii, V. I. (1994) Determination of the accessible surface of globular proteins by means of tritium planigraphy. Eur. Biophys. J. 23, 139–143.

    Article  PubMed  CAS  Google Scholar 

  3. Esposito, G., Lesk, A. M., Molinari, H., Motta, A., Niccolai, N., and Pastore, A. (1992) Probing protein structure by solvent perturbation of nuclear magnetic resonance spectra. Nuclear magnetic resonance spectral editing and topological mapping in proteins by paramagnetic relaxation filtering. J. Mol. Biol. 224, 659–670.

    Article  PubMed  CAS  Google Scholar 

  4. Esposito, G., Lesk, A. M., Molinari, H., Motta, A., Niccolai, N., and Pastore, A. (1993) Probing protein structure by solvent perturbation of NMR spectra. II. Determination of surface and buried residues in homologous proteins. Biopolymers 33, 839–846.

    Article  PubMed  CAS  Google Scholar 

  5. Improta, S., Molinari, H., Pastore, A., Consonni, R., and Zetta, L. (1995) Probing protein structure by solvent perturbation of NMR spectra: a comparison with photochemically induced dynamic nuclear polarization techniques applied to native α-lactalbumin. Eur. J. Biochem. 227, 78–86.

    Article  PubMed  CAS  Google Scholar 

  6. Molinari, H., Esposito, G., Ragona, L., Pegna, M., Niccolai, N., Brunne, R. M., et al. (1997) Probing protein structure by solvent perturbation of NMR spectra: the surface accessibility of bovine pancreatic trypsin inhibitor. Biophys. J. 73, 382–396.

    PubMed  CAS  Google Scholar 

  7. Spera, S., Ikura, M., and Bax, A. (1991) Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J. Biomol. NMR. 1, 155–165.

    Article  PubMed  CAS  Google Scholar 

  8. Mandell, J. G., Falick, A. M., and Komives, E. A. (1998) Measurement of amide hydrogen exchange by MALDI-TOF mass spectrometry. Anal. Chem. 70, 3987–3995.

    Article  PubMed  CAS  Google Scholar 

  9. Ermacora, M. R., Ledman, D. W., Hellinga, H. W., Hsu, G. W., and Fox, R. O. (1994) Mapping staphylococcal nuclease conformation using an EDTA-Fe derivative attached to genetically engineered cysteine residues. Biochemistry 33, 13,625–13,641.

    Article  CAS  Google Scholar 

  10. Mumenthaler, C. and Braun, W. (1995) Predicting the helix packing of globular proteins by self-correcting distance geometry. Protein Sci. 4, 863–871.

    Article  PubMed  CAS  Google Scholar 

  11. Clore, G. M. and Gronenborn, A. M. (1999) Determining structures of large proteins and protein complexes by NMR, in Modern Techniques in Protein NMR, vol. 16 (Krishna, N. R., Berliner, L. J., eds.), Kluwer Academic/Plenum Publishers, New York, pp.

    Google Scholar 

  12. Wang, Y. X., Jacob, J., Cordier, F., Wingfield, P., Stahl, S. J., Lee-Huan, S., et al. (1999) Measurement of 3hJNC' connectivities across hydrogen bonds in a 30 kDa protein.

  13. Cordier, F. and Grzesiek, S. (1999) Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings. J. Am. Chem. Soc. 121, 1601–1602.

    Article  CAS  Google Scholar 

  14. Zhu, H., Schein, C. H., and Braun, W. (2000) MASIA: recognition of patterns and properties in multiple aligned sequences. Bioinformatics In press.

  15. Soman, K. V., Schein, C. H., Zhu, H., and Braun, W. (2000) Homology modeling and simulations of nuclease structures, in Nuclease Methods and Protocols, vol. 60 (Schein, C. H., ed.), Humana Press, Totowa, NJ.

    Google Scholar 

  16. Hanggi, G. and Braun, W. (1994) Pattern recognition and self-correcting distance geometry calculations applied to myohemerythrin. FEBS Lett. 344, 147–153.

    Article  PubMed  CAS  Google Scholar 

  17. Simons, K. T., Bonneau, R., Riczinski, I., and Baker, D. (1999) Ab initio protein structure prediction of CASP III targets using Rosetta. Prot. Struct. Funct. Gen. Suppl. 3, 171–176.

    Article  Google Scholar 

  18. Sternberg, M. J. E., Bates, P. A., Kelley, L. A., and MacCallum, R. M. (1999) Progress in protein structure prediction: assessment of CASP3. Curr. Opin. Struct. Biol. 9, 368–373.

    Article  PubMed  CAS  Google Scholar 

  19. Günter, P., Braun, W., and Wüthrich, K. (1991) Efficient computation of three-dimensional protein structures in solution from NMR data using the program DIANA and the supporting programs CALIBA, HABAS, and GLOMSA. J. Mol. Biol. 217, 517–530.

    Article  Google Scholar 

  20. Zhu, H. and Braun, W. (1999) Sequence specificity, statistical potentials and three-dimensional structure prediction with self-correcting distance geometry calculations of beta-sheet formation. Proc. Sci. 8, 1–17.

    Google Scholar 

  21. Hynes, T. R. and Fox, R. O. (1991) The crystal structure of staphylococcal nuclease refined at 1.7 Angstrom resolution. Prot. Struct. Funct. Genet. 10, 92.

    Article  CAS  Google Scholar 

  22. Hope, T. J. (1999) The ins and outs of HIV. Rev. Arch. Biochem. Biophys. 365, 186–191.

    Article  CAS  Google Scholar 

  23. Battiste, J. L., Mao, H., Rao, N. S., Tan, R., Muhandiram, D. R., Kay, L. E., et al. (1996) Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science 273, 1547–1551.

    Article  PubMed  CAS  Google Scholar 

  24. Scanlon, M. J., Fairlie, D. P., Craik, D. J., Englebretsen, D. R., and West, M. L. (1995) NMR solution structure of the RNA-binding peptide from human immunodeficiency virus (type 1) Rev. Biochem. 34, 8242–8249.

    Article  CAS  Google Scholar 

  25. Ye, X., Gorin, A., Ellington, A. D., and Patel, D. J. (1996) Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nat. Struct. Biol. 3, 1026–1033.

    Article  PubMed  CAS  Google Scholar 

  26. Auer, M., Gremlich, H.-U., Seifert, J.-M., Daly, T. J., Parslow, T. G., Casari, G., and Gstach, H. (1994) Helix-loop-helix motif in HIV-1 rev. Biochemistry 33, 2988–2996.

    Article  PubMed  CAS  Google Scholar 

  27. Watts, N. R., Misra, M., Wingfield, P. T., Stahl, S. J., Cheng, N., Trus, B. L., and Steven, A. C. (1998) Three-dimensional structure of HIV-1 rev protein filaments. J. Struct. Biol. 121, 41–52.

    Article  PubMed  CAS  Google Scholar 

  28. Thomas, S. L., Hauber, J., and Casari, G. (1997) Probing the structure of the HIV-1 Rev transactivator protein by functional analysis. Prot. Eng. 10, 103–107.

    Article  CAS  Google Scholar 

  29. Thomas, S. L., Oft, M., Jaksche, H., Casari, G., Heger, P., Dobrovnik, M., et al. (1998) Functional analysis of the human immunodeficiency virus type 1 Rev protein oligomerization interface. J. Virol. 72, 2935–2944.

    PubMed  CAS  Google Scholar 

  30. Fraczkiewicz, R. and Braun, W. (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comp. Chem. 19, 319–333.

    Article  CAS  Google Scholar 

  31. Schaumann, T., Braun, W., and Wuthrich, K. (1990) The program FANTOM for energy refinement of polypeptides and proteins using a Newton-Raphson minimizer in torsion angle space. Biopolymers 29, 679–694.

    Article  CAS  Google Scholar 

  32. Vila, J., Williams, R. L., Vasquez, M., and Scheraga, H. A. (1991) Empirical solvation models can be used to differentiate native from nearnative conformations of bovine pancreatic trypsin inhibitor. Prot. Struct. Funct. Gen. 10, 199–218.

    Article  CAS  Google Scholar 

  33. Park, B. H., Huang, E. S., and Levitt, M. (1997) Factors affecting the ability of energy functions to discrimiate correct from incorrect folds. J. Mol. Biol. 266, 831–846.

    Article  PubMed  CAS  Google Scholar 

  34. Samudrala, R. and Moult, J. (1998) An all-atom distance dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275, 895–916.

    Article  PubMed  CAS  Google Scholar 

  35. Simons, K. T., Riczinski, I., Kooperberg, C., Fox, B. A., Bystroff, C., and Baker, D. (1999) Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34, 82–95.

    Article  PubMed  CAS  Google Scholar 

  36. Braun, W. (1987) Distance geometry and related methods for protein structure determination from NMR data. Q. Rev. Biophys. 19, 115–157.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soman, K.V., Braun, W. Determining the three-dimensional fold of a protein from approximate constraints. Cell Biochem Biophys 34, 283–304 (2001). https://doi.org/10.1385/CBB:34:3:283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:34:3:283

Index Entries

Navigation