Cell Biochemistry and Biophysics

, Volume 39, Issue 2, pp 119–131 | Cite as

Distinct domains of human CDC5 direct its nuclear import and association with the spliceosome

  • Liansen Liu
  • Remo Gräub
  • Myint Hlaing
  • Conrad L. Epting
  • Christoph W. Turck
  • Xiao-Qin Xu
  • Leanne Zhang
  • Harold S. Bernstein
Original Article


Genetic studies have shown that CDC5 proteins are essential for G2 progression and mitotic entry. CDC5 homologs in yeast and mammals are essential for pre-messenger ribonucleic acid (mRNA) processing. Other gene products also have been shown to play roles in both pre-mRNA splicing and cell cycle regulation, prompting the description of several models to explain the mechanism(s) linking these two processes. In this study, we demonstrate that the amino-terminus of human CDC5 directs nuclear import independent of consensus nuclear localization signals or phosphorylation, and that the carboxyl-terminus of human CDC5 preferentially associates with spliceosomal complexes in proximity of RNA transcription during interphase. hCDC5 colocalizes with Sm proteins in a cell cycle- and domain-dependent manner, and several proteins in the human CDC5-associated complex are identified that suggest potential roles for the complex in coupling pre-mRNA splicing to transcriptional activation and protein translation. These results indicate that human CDC5 may function in pre-mRNA processing and cell cycle progression through more than one mechanism.

Index Entries

Cell cycle nuclear speckle nuclear import phosphorylation pre-mRNA splicing spliceosome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nasmyth, K. and Nurse, P. (1981) Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 182, 119–124.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohi, R., McCollum, D., Hirani, B., Den Haese, G. J., Zhang, X., Burke, J. D., Turner, K. and Gould, K. L. (1994) The Schizosaccharomyces pombe cdc5+gene encodes an essential protein with homology to c-Myb. EMBO J. 13, 471–483.PubMedGoogle Scholar
  3. 3.
    Bernstein, H. S. and Coughlin, S. R. (1998) A mammalian homolog of fission yeast Cdc5 regulates G2 progression and mitotic entry. J. Biol. Chem. 273, 4666–4671.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernstein, H. S. and Coughlin, S. R. (1997) Pombe Cdc5-related protein. A putative human transcription factor implicated in mitogen-activated signaling. J. Biol. Chem. 272, 5833–5837.PubMedCrossRefGoogle Scholar
  5. 5.
    Lei, X.-H., Shen, X., Xu, X.-Q. and Bernstein, H. S. (2000) Human Cdc5, a regulator of mitotic entry, can act as a site-specific DNA binding protein. J. Cell. Sci. 113, 4523–4531.PubMedGoogle Scholar
  6. 6.
    Johnson, L. M. and Too, C. K. (2001) Prolactin, interleukin-2 and FGF-2 stimulate expression, nuclear distribution and DNA-binding of rat homolog of pombe Cdc5 in Nb2 T lymphoma cells. Mol. Cell. Endocrinol. 184, 151–161.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsai, W. Y., Chow, Y. T., Chen, H. R., Huang, K. T., Hong, R. I., Jan, S. P., et al. (1999) Cef1p is a component of the Prp 19p-associated complex and essential for pre-mRNA splicing. J. Biol. Chem. 274, 9455–9462.PubMedCrossRefGoogle Scholar
  8. 8.
    McDonald, W. H., Ohi, R., Smelkova, N., Frendewey, D. and Gould, K. L. (1999) Mybrelated fission yeast cdc5p is a component of a 40S snRNP-containing complex and is essential for pre-mRNA splicing. Mol. Cell. Biol. 19, 5352–5362.PubMedGoogle Scholar
  9. 9.
    Ajuh, P., Kuster, B., Panov, K., Zomerdijk, J. C., Mann, M. and Lamond, A. I. (2000) Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO. J. 19, 6569–6581.PubMedCrossRefGoogle Scholar
  10. 10.
    Ohi, M. D., Link, A. J., Ren, L., Jennings, J. L., McDonald, W. H. and Gould, K. L. (2002) Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol. Cell. Biol. 22, 2011–2024.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou, Z., Licklider, L. J., Gygi, S. P. and Reed, R. (2002) comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185.PubMedCrossRefGoogle Scholar
  12. 12.
    Makarov, E. M., Makarova, O. V., Urlaub, H., Gentzel, M., Will, C. L., Wilm, M. and Luhrmann, R. (2002) Small nuclear ribonucleo-protein remodeling during catalytic activation of the spliceosome. Science 298, 2205–2208.PubMedCrossRefGoogle Scholar
  13. 13.
    Burns, C. G., Ohi, R., Krainer, A. R. and Gould, K. L. (1999) Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 96, 13789–13794.PubMedCrossRefGoogle Scholar
  14. 14.
    Boudrez, A., Beullens, M., Groenen, P., Van Eynde, A., Vulsteke, V., Jagiello, I., et al. (2000) NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J. Biol. Chem. 275, 25411–25417.PubMedCrossRefGoogle Scholar
  15. 15.
    Ajuh, P., Sleeman, J., Chusainow, J. and Lamond, A. I. (2001) A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J. Biol. Chem. 276, 42370–42381.PubMedCrossRefGoogle Scholar
  16. 16.
    Burns, C. G., Ohi, R., Mehta, S., O'Toole, E. T., Winey, M., Clark, et al. (2002) Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 801–815.PubMedCrossRefGoogle Scholar
  17. 17.
    Morgan, D. O. (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Ann. Rev. Cell Dev. Biol. 13, 261–291.CrossRefGoogle Scholar
  18. 18.
    Johnston, L. H. and Thomas, A. P. (1982) The isolation of new DNA synthesis mutants in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 186, 439–444.PubMedCrossRefGoogle Scholar
  19. 19.
    Vijayraghavan, U., Company, M. and Abelson, J. (1989) Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 3, 1206–1216.PubMedCrossRefGoogle Scholar
  20. 20.
    Shea, J. E., Toyn, J. H. and Johnston, L. H. (1994) The budding yeast U5 snRNP Prp8 is a highly conserved protein which links RNA splicing with cell cycle progression. Nuclo Acids Res. 22, 5555–5564.CrossRefGoogle Scholar
  21. 21.
    Kassir, Y. and Simchen, G. (1978) Meiotic recombination and DNA synthesis in a new cell cycle mutant of Saccharomyces cerevisiae. Genetics 90, 49–68.PubMedGoogle Scholar
  22. 22.
    Kassir, Y., Kupiec, M., Shalom, A. and Simchen, G. (1985) Cloning and mapping of CDC40, a Saccharomyces cerevisiae gene with a role in DNA repair. Curr. Genet. 9, 253–257.PubMedCrossRefGoogle Scholar
  23. 23.
    Kupiec, M. and Simchen, G. (1986) DNA-repair characterization of cdc40-1, a cell-cycle mutant of Saccharomyces cerevisiae. Mutat. Res. 162, 33–40.PubMedGoogle Scholar
  24. 24.
    Vaisman, N., Tsouladze, A., Robzyk, K., Ben-Yehuda, S., Kupiec, M. and Kassir, Y. (1995) The role of Saccharomyces cerevisiae Cdc40p in DNA replication and mitotic spindle formation and/or maintenance. Mol. Gen. Genet. 247, 123–136.PubMedCrossRefGoogle Scholar
  25. 25.
    Hwang, L. H. and Murray, A. W. (1997) A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis. Mol. Biol. Cell. 8, 1877–1887.PubMedGoogle Scholar
  26. 26.
    Company, M., Arenas, J. and Abelson, J. (1991) Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349, 487–493.PubMedCrossRefGoogle Scholar
  27. 27.
    Lundgren, K., Allan, S., Urushiyama, S., Tani, T., Ohshima, Y., Frendewey, D. and Beach, D. (1996) A connection between pre-mRNA splicing and the cell cycle in fission yeast: cdc28+ is allelic with prp8+ and encodes an RNA-dependent ATPase/helicase. Mol. Biol. Cell. 7, 1083–1094.PubMedGoogle Scholar
  28. 28.
    Potashkin, J., Naik, K. and Wentz-Hunter, K. (1993) U2AF homolog required for splicing in vivo. Science 262, 573–575.PubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi, K., Yamada, H. and Yanagida, M. (1994) Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol. Biol. Cell. 5, 1145–1158.PubMedGoogle Scholar
  30. 30.
    Gross, T., Richert, K., Mierke, C., Lutzelberger, M. and Kaufer, N. F. (1998) Identification and characterization of srpl, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors. Nucl. Acids Res. 26, 505–511.PubMedCrossRefGoogle Scholar
  31. 31.
    Rosenberg, G. H., Alahari, S. K. and Kaufer, N. F. (1991) prp4 from Schizosaccharomyces pombe, a mutant deficient in pre-mRNA splicing isolated using genes containing artificial introns. Mol. Gen. Genet. 226, 305–309.PubMedCrossRefGoogle Scholar
  32. 32.
    Tang, Z., Yanagida, M. and Lin, R. J. (1998) Fission yeast mitotic regulator Dsk1 is an SR protein-specific kinase. J. Biol. Chem. 273, 5963–5969.PubMedCrossRefGoogle Scholar
  33. 33.
    Spector, D. L. (1994) RNA processing. Cycling splicing factors. Nature 369, 604.PubMedCrossRefGoogle Scholar
  34. 34.
    Seshadri, V., Vaidya, V. C. and Vijayraghavan, U. (1996) Genetic studies of the PRP17 gene of Saccharomyces cerevisiae: A domain essential for function maps to a nonconserved region of the protein. Genetics 143, 45–55.PubMedGoogle Scholar
  35. 35.
    Stukenberg, P. T., Lustig, K. D., McGarry, T. J., King, R. W., Kuang, J. and Kirschner, M. W. (1997) Systematic identification of mitotic phosphoproteins. Curr. Biol. 7, 338–348.PubMedCrossRefGoogle Scholar
  36. 36.
    Mintz, P. J. and Spector, D. L. (2000) Compartmentalization of RNA processing factors within nuclear speckles. J. Struct. Biol. 129, 241–251.PubMedCrossRefGoogle Scholar
  37. 37.
    Dignam, J. D., Lebovitz, R. M. and Roeder, R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl. Acids Res. 11, 1475–1489.PubMedCrossRefGoogle Scholar
  38. 38.
    Markovtsov, V., Nikolic, J. M., Goldman, J. A., Turck, C. W., Chou, M. Y. and Black, D. L. (2000) Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell. Biol. 20, 7463–7479.PubMedCrossRefGoogle Scholar
  39. 39.
    Duverger, E., Pellerin-Mendes, C., Mayer, R., Roche, A. C. and Monsigny, M. (1995) Nuclear import of glycoconjugates is distinct from the classical NLS pathway. J. Cell. Sci. 108, 1325–1332.PubMedGoogle Scholar
  40. 40.
    Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.PubMedCrossRefGoogle Scholar
  41. 41.
    Eilbracht, J. and Schmidt-Zachmann, M. S. (2001) Identification of a sequence element directing a protein to nuclear speckles. Proc. Natl. Acad. Sci. USA 98, 3849–3854.PubMedCrossRefGoogle Scholar
  42. 42.
    Wei, X., Somanathan, S., Samarabandu, J. and Berezney, R. (1999) Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J. Cell. Biol. 146, 543–558.PubMedCrossRefGoogle Scholar
  43. 43.
    Ohi, R., Reoktistova, A., McCann, S., Valentine, V., Look, A. T., Lipsick, J. S. and Gould, K. L. (1998) Myb-related Schizosaccharomyces pombe cdc5p is structurally and functionally conserved in eukaryotes. Mol. Cell. Biol. 18, 4097–4108.PubMedGoogle Scholar
  44. 44.
    van der Houven van Oordt, W., Diaz-Meco, M. T., Lozano, J., Krainer, A. R., Moscat, J. and Caceres, J. F. (2000) The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J. Cell. Biol. 149, 307–316.PubMedCrossRefGoogle Scholar
  45. 45.
    Tollervey, D. and Caceres, J. F. (2000) RNA processing marches on. Cell 103, 703–709.PubMedCrossRefGoogle Scholar
  46. 46.
    Engemann, H., Heinzel, V., Page, G., Preuss, U. and Scheidtmann, K. H. (2002) DAP-like kinase interacts with the rat homolog of Schizosaccharomyces pombe CDC5 protein, a factor involved in pre-mRNA splicing and required for G2/M phase transition. Nucl. Acids Res. 30, 1408–1417.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang, D., Abovich, N. and Rosbash, M. (2001) A biochemical function for the Sm complex. Mol. Cell. 7, 319–329.PubMedCrossRefGoogle Scholar
  48. 48.
    Venables, J. P., Elliott, D. J., Makarova, O. V., Makarov, E. M., Cooke, H. J. and Eperon, I. C. (2000) RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2beta and affect splicing. Hum. Mol. Genet. 9, 685–694.PubMedCrossRefGoogle Scholar
  49. 49.
    Gotzmann, J., Gerner, C., Meissner, M., Holzmann, K., Grimm, R., Mikulits, W. and Sauermann, G. (2000) hNMP 200: a novel human common nuclear matrix protein combining structural and regulatory functions. Exp. Cell. Res. 261, 166–179.PubMedCrossRefGoogle Scholar
  50. 50.
    Sasaki, Y., Itoh, F., Suzuki, H., Kobayashi, T., Kakiuchi, H., Hareyama, M. and Imai, K. (2000) Identification of genes highly expressed in G2-arrested Chinese hamster ovary cells by differential display analysis. J. Clin. Lab. Anal. 14, 314–319.PubMedCrossRefGoogle Scholar
  51. 51.
    Serfling, E., Berberich-Siebelt, F., Chuvpilo, S., Jankevics, E., Klein-Hessling, S., Twardzik, T. and Avots, A. (2000) The role of NF-AT transcription factors in T cell activation and differentiation. Biochim. Biophys. Acta 1498, 1–18.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Liansen Liu
    • 1
  • Remo Gräub
    • 1
  • Myint Hlaing
    • 1
  • Conrad L. Epting
    • 1
    • 4
  • Christoph W. Turck
    • 2
  • Xiao-Qin Xu
    • 4
  • Leanne Zhang
    • 1
  • Harold S. Bernstein
    • 1
    • 3
    • 4
  1. 1.Cardiovascular Research InstituteUniversity of California San FranciscoSan Francisco
  2. 2.Howard Hughes Medical InstituteUniversity of California San FranciscoSan Francisco
  3. 3.Cancer CenterUniversity of California San FranciscoSan Francisco
  4. 4.Department of PediatricsUniversity of California San FranciscoSan Francisco

Personalised recommendations