Skip to main content

Bioavailability of selenium from meat and broccoli as determined by retention and distribution of 75Se

Abstract

The concentration of selenium (Se), an essential nutrient, is variable in foods, depending, in part, on how and where foods are produced; some foods accumulate substantial amounts of Se when produced on high-Se soils. The chemical form of Se also differs among foods. Broccoli is a Se-accumulating plant that contains many methylated forms of Se, and Se bioavailability from broccoli has been reported to be low. Red meats such as pork or beef could accumulate Se when the animal is fed high-Se diets, and Se from such meats has been reported to be highly bioavailable for selenoprotein synthesis. In a further attempt to characterize the utilization of Se from broccoli and meats such as pork or beef, we have fed rats diets adequate (0.1 µg Se/g diet) in Se or high in Se (1.5 µg S/g diet), with the Se source being either high-Se broccoli or beef. Rats were then given test meals of broccoli or pork intrinsically labeled with 75Se. When dietary Se was nutritionally adequate (0.1 µg/g diet), more 75Se from pork than broccoli was retained in tissues; however, there were no significant differences in whole-body retention when dietary Se was high (1.5 µg/g diet). A significantly greater percentage of 75Se from broccoli than pork was excreted in the urine and dietary Se did not affect urinary excretion of broccoli 75Se, but the amount excreted from pork varied directly with dietary Se intake. Radiolabeled 75Se derived from pork effectively labeled selenoproteins in all tissues examined, but 75Se from broccoli was undetectable in selenoproteins. These differences in retention and distribution of Se from broccoli or pork are consistent with reported differences in bioavailability of Se from beef and broccoli. They also suggest that there are fewer differences in bioavailability when Se is consumed in supranutritional amounts.

This is a preview of subscription content, access via your institution.

References

  1. 1

    B. Pence, Dietary selenium and anti-oxidant status: toxic effects of 1,2-dimethylhydrazine in rats, J. Nutr. 121, 138–144 (1991).

    PubMed  CAS  Google Scholar 

  2. 2

    M. Beck, P. Kolbeck, L. Rohr, et al., Benign human enterovirus becomes virulent in selenium-deficient mice, J. Med. Virol. 43, 166–170 (1995).

    Article  Google Scholar 

  3. 3

    J. Clark, G. Combs, B. Turnbull, et al., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin, JAMA 276, 1957–1963 (1996).

    PubMed  Article  CAS  Google Scholar 

  4. 4

    Y. Xia, X. Zhao, L. Zhu, et al., Metabolism of selenate and selenomethionine by a selenium-deficient population of men in China, J. Nutr. Biochem. 3, 202–210 (1992).

    Article  CAS  Google Scholar 

  5. 5

    M. Beilstein and P. Whanger, Chemical forms of selenium in rat tissues after administration of selenite or selenomethionine, J. Nutr. 116, 1711–1719 (1986).

    PubMed  CAS  Google Scholar 

  6. 6

    J. A. Butler, M. A. Beilstein, and P. D. Whanger, Influence of dietary methionine on the metabolism of selenomethionine in rats, J. Nutr. 119, 1001–1009 (1989).

    PubMed  CAS  Google Scholar 

  7. 7

    H. E. Ganther and J. R. Lawrence, Chemical transformations of selenium in living organisms. Improved forms of selenium for cancer prevention, Terahedron 53, 12,299–12,310 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    H. E. Ganther, Pathways of selenium metabolium including respiratory excretory products, J. Am. Coll. Toxicol. 5, 1–5 (1986).

    CAS  Google Scholar 

  9. 9

    R. Burk, Molecular biology of selenium with implications for its metabolism, FASEB J. 5, 2274–2271 (1991).

    PubMed  CAS  Google Scholar 

  10. 10

    C. Ip and H. E. Ganther, Activity of methylated forms of selenium in cancer prevention, Cancer Res. 50, 1206–1211 (1990).

    PubMed  CAS  Google Scholar 

  11. 11

    J. R. Hunt, Tailoring advice on dietary supplements: an opportunity for dietetics professionals, J. Am. Diet. Assoc. 102, 1754–1755 (2002).

    PubMed  Article  Google Scholar 

  12. 12

    H. Meltzer, K. Bibow, I. Paulsen, et al., Different bioavailability in humans of wheat and fish selenium as measured by blood platelet response to increased dietary Se, Biol. Trace Element Res. 36, 229–241 (1993).

    CAS  Google Scholar 

  13. 13

    H. Van der Torre, W. Van Dokkum, G. Schaafsma, et al., Effect of various levels of selenium in wheat and meat on blood Se status indices and on Se balance in Dutch men, Br. J. Nutr. 65, 69–80 (1991).

    PubMed  Article  Google Scholar 

  14. 14

    H. M. Meltzer, G. Norheim, K. Bibow, et al., The form of selenium determines the response to supplementation in a selenium replete population, Eur. J. Clin. Nutr. 44, 435–446 (1990).

    PubMed  CAS  Google Scholar 

  15. 15

    B. Shi and J. Spallholz, Bioavailability of selenium from raw and cooked ground beef assessed in selenium-deficient Fischer rats, J. Am. Coll. Nutr. 13, 95–101 (1994).

    PubMed  CAS  Google Scholar 

  16. 16

    J. W. Finley, C. Davis, and Y. Feng, Selenium from high-selenium broccoli protects rats from colon cancer, J. Nutr. 130, 2384–2389 (2000).

    PubMed  CAS  Google Scholar 

  17. 17

    C. Ip, D. J. Lisk, and G. S. Stoewsand, Mammary cancer prevention by regular garlic and selenium-enriched garlic, Nutr. Cancer 17, 279–286 (1992).

    PubMed  CAS  Article  Google Scholar 

  18. 18

    C. Ip and D. Lish, Characterization of tissue selenium profiles and anticarcinogenic responses in rats fed natural sources of selenium-rich products, Carcinogenesis 15, 573–576 (1994).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    X.-J. Cai, E. Block, P. C. Uden, et al., Allium chemistry: identification of selenoamino acids in ordinary and selenium-enriched garlic, onion, and broccoli using gas chromatography with atomic emission detection, J. Agric. Food Chem. 43, 1754–1757 (1995).

    Article  CAS  Google Scholar 

  20. 20

    P. D. Whanger, Selenocompounds in plants and animals and their biological significance, J. Am. Coll. Nutr. 21, 223–232 (2002).

    PubMed  CAS  Google Scholar 

  21. 21

    J. Finley, Selenium from broccoli is metabolized differently than Se from selenite, selenate or selenomethionine, J. Agric. Food Chem. 46, 3702–3707 (1998).

    Article  CAS  Google Scholar 

  22. 22

    J. W. Finley, C. Ip, D. Lisk, et al., Cancer-protective properties of high-selenium broccoli, J. Agric. Food Chem. 49, 2679–2683 (2001).

    PubMed  Article  CAS  Google Scholar 

  23. 23

    C. D. Davis, H. Zeng, and J. W. Finley, Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice, J. Nutr. 132, 307–309 (2002).

    PubMed  CAS  Google Scholar 

  24. 24.

    J. W. Finley and D. D. Davis, Selenium from high-selenium broccoli is utilized differently than selenite, selenate and selenomethionine, but is more effective in inhibiting colon carcinogenesis, BioFactors 14, 196 (2001).

    Google Scholar 

  25. 25.

    J. Holden, R. Gebhardt, C. Davis, et al., A nationwide study of the selenium content and variability in white bread, J. Food Comp. Anal. 4, 183–195 (1991).

    Article  CAS  Google Scholar 

  26. 26.

    J. B. van Ryssen, J. T. Deagen, M. Beilstein, et al., Comparative metabolism of organic and inorganic selenium by sheep, J. Agric. Food Chem. 37, 1358–1363 (1989).

    Article  Google Scholar 

  27. 27

    B. Shi and J. Spallholz, Selenium from beef is highly bioavailable as assessed by liver glutathione peroxidase (EC 1.11.1.9) activity and tissue selenium, Br. J. Nutr. 72, 873–881 (1994).

    PubMed  Article  CAS  Google Scholar 

  28. 28

    K. J. Hintze, G. P. Lardy, and J. W. Finley, Selenium accumulation in beef: effect of dietary selenium and geographical area of animal origin, J. Agric. Food Chem. 50, 3938–3942 (2001).

    Article  CAS  Google Scholar 

  29. 29.

    M. Grusak and S. Pezeshigi, Uniformly 15N-labeled soybean seeds produced for use in human and animal nutrition studies: description of a recirculating hydroponic growth system and whole plant nutrient and environmental requirements, J. Sci. Food Agric. 64, 223–230 (1994).

    Article  CAS  Google Scholar 

  30. 30

    J. W. Finley and C. D. Davis, Manganese absorption and retention in rats is affected by the type of dietary fat, Biol. Trace Element Res. 82, 143–158 (2001).

    Article  CAS  Google Scholar 

  31. 31

    J. Finley, L. Matthys, T. Shuler, et al., Selenium content of foods purchased in North Dakota, Nutr. Res. 16, 723–728 (1996).

    Article  CAS  Google Scholar 

  32. 32

    J. W. Finley, Manganese absorption and retention by young women is associated with serum ferritin concentration, Am. J. Clin. Nutr. 70, 37–43 (1999).

    PubMed  CAS  Google Scholar 

  33. 33.

    Z. Kuzina, L. Genci, J. Kuruc, et al., Porovnanie aminokyselinoveho zlozenia hovadzieho a bravcoveho masa [Comparison of amino acid composition of beef and pork], Acta Zootech. 31, 85–122 (1976).

    Google Scholar 

  34. 34.

    S. Gerrior, Estimating nutrient contributions from lean beef and pork in the U.S. food supply series, Fam. Econ. Nutr. Rev. 9, 38–43 (1996).

    Google Scholar 

  35. 35

    X. Wang and C. M. Parsons, Effect of raw material source, processing systems, and processing temperatures on amino acid digestibility of meat and bone meals, Poult. Sci. 77, 834–841 (1998).

    PubMed  CAS  Google Scholar 

  36. 36.

    C. E. Bodwell and B. A. Anderson, Nutritional composition and value of meat and meat products, in Muscle as Food, P. J. Bechtel, ed., Academic, Orlando, FL, pp. 321–369 (1986).

    Google Scholar 

  37. 37.

    H. Y. Wen, R. L. Davis, B. Shi, et al., Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine, and sodium selenite assessed in selenium-deficient rats, Biol. Trace Element Res. 58, 43–53 (1997).

    CAS  Article  Google Scholar 

  38. 38

    R. Martin, V. Young, J. Blumberg, et al., Ascorbic acid-selenite interactions in humans studied with an oral dose of 74SeO 2−3 , Am. J. Clin. Nutr. 49, 862–869 (1989).

    PubMed  CAS  Google Scholar 

  39. 39

    M. Robinson, H. Rea, G. Friend, et al., On supplementing the selenium intake of New Zealanders: 2. Prolonged metabolic experiments with daily supplements of selenomethionine, selenite and fish, Br. J. Nutr. 39, 589–600 (1978).

    PubMed  Article  CAS  Google Scholar 

  40. 40

    J. Robinson, M. Robinson, O. Levander, et al., Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes, Am. J. Clin. Nutr. 41, 1023–1031 (1985).

    PubMed  CAS  Google Scholar 

  41. 41

    M. T. Roberge, A. J. Borgerding, and J. W. Finley, Choice of extracting conditions in the speciation of compounds from high selenium broccoli will affect analytical results, J. Agric. Food Chem. 51, 4191–4197 (2003).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    X.-J. Cai, E. Block, P. C. Uden, et al., Allium chemistry: identification of natural abundance organoselenium compounds in human breath after ingestion of garlic using gas chromatography with atomic emission detection, J. Agric. Food Chem. 43, 1751–1753 (1995).

    Article  CAS  Google Scholar 

  43. 43

    Z. Zhu, W. Jiang, H. E. Ganther, et al., Activity of Se-allylselenocysteine in the presence of methionine gamma- lyase on cell growth, DNA integrity, apoptosis, and cell-cycle regulatory molecules, Mol. Carcinog. 29, 191–197 (2000).

    PubMed  Article  CAS  Google Scholar 

  44. 44

    G. Banuelos, H. Ajwa, J. Wu, et al., Selenium-induced growth reduction in Brassica land races considered for phytoremediation, Ecotoxicol. Environ. Safety 36, 282–287. (1997).

    PubMed  Article  CAS  Google Scholar 

  45. 45

    K. J. Hintze, G. P. Lardy, M. Marchello, et al., Areas with high concentrations of selenium in the soil and forage produce beef with enhanced concentrations of selenium, J. Agric. Food Chem. 49, 1062–1067 (2001).

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    C. Ip and H. Ganther, Activity of methylated froms of selenium in cancer prevention, Cancer Res. 50, 1206–1211 (1996).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John W. Finley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Finley, J.W., Grusak, M.A., Keck, AS. et al. Bioavailability of selenium from meat and broccoli as determined by retention and distribution of 75Se. Biol Trace Elem Res 99, 191 (2004). https://doi.org/10.1385/BTER:99:1-3:191

Download citation

Index Entries

  • Selenium
  • bioavailability
  • broccoli
  • pork
  • beef
  • selenoprotein