Skip to main content
Log in

Comparative in situ study of the intestinal absorption of aluminum, manganese, nickel, and lead in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This comparative study of the intestinal absorption of four toxic metals (aluminum, manganese, nickel, and lead) carried out in rats using the in situ intestinal perfusion technique was able to measure the partition of each metal between the intestine (intestinal retention), the blood circulation, and target tissues after 1 h. The perfused metal solutions were at concentrations likely to occur during oral intoxication. It was found that aluminum (48 and 64 mM), even as a citrate complex, crossed the brush border with difficulty (0.4% of the perfused amount); about 60% of this was retained in the intestine and the remainder was found in target tissues (about 36%). Conversely, lead (4.8–48 µM) penetrated the intestine more easily (about 35% of the perfused amount), was slightly retained (about 12% of the input), and was soon found in the tissues (about 58% of the input) and to a lesser degree in circulation (about 29%). Within the same concentration range, nickel and manganese showed certain similarities, such as a reduced crossing of the brush border proportional to the increase in the concentration perfused (0.17–9.5 mM). There was similar intestinal retention and absorption (about 80% and 20% of the input, respectively). Manganese crossed the brush border more easily and was diffused more rapidly into tissues. Finally, the addition of equimolar amounts of iron (4.7 mM) produced opposite effects on the absorption of the two elements, inhibiting manganese and showing a trend to increase in nickel absorption. This could be the result of competition between Fe2+ and Mn2+ for the same transcellular transporters and the slight predominance of paracellular mechanism in the event of “Fe2+-Ni2+” association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Ittel, S. Kinzel, A. Ortmanns, et al., Effect of iron status on the intestinal absorption of aluminum: a reappraisal, Kidney Int. 50, 1879–1888 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. A. E. Gomez-Ayala, M. S. Campos, I. Lopez-Aliaga, et al., Effects of source of iron on duodenal absorption of calcium, phosphorus, magnesium, copper and zinc in rats with ferropaenic anaemia, Int. J. Vitam. Nutr. Res. 67(2), 106–114 (1997).

    PubMed  CAS  Google Scholar 

  3. A. E. Gomez-Ayala, F. Lisbona, I. Lopez-Aliaga, et al., The absorption of iron, calcium, phosphorus, magnesium, copper and zinc in the jejunum-ileum of control and iron-deficient rats, Lab. Anim. 32(1), 72–79 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. T. Kuzuya, T. Hasegawa, Y. Ogura, et al., Effect of transmucosal fluid movement on zinc and copper absorption from rat small intestine, Clin. Exp. Pharmacol. 25(6), 412–416 (1998).

    CAS  Google Scholar 

  5. G. B. Van Der Voet and F. A. DeWolff, Intestinal absorption of aluminum: effect of sodium and calcium, Arch. Toxicol. 72(2), 110–114 (1998).

    Article  PubMed  Google Scholar 

  6. E. Tavares, O. Carreras, A. Gomez-Tubio, et al., Effects of folic acid and amino acids supplementation on zinc intestinal absorption in the progeny of ethanol-treated rats, J. Physiol. Biochem. 56(3), 247–256 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. H. Febel, B. Szegedi, and S. Huszar, Absorption of inorganic, trivalent and hexavalent chromium following oral and intrajejunal doses in rats, Acta Vet. Hung. 49(2), 203–209 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. J. E. Gorsky, A. A. Dietz, H. Spencer, et al., Metabolic balance of aluminum studied in six men, Clin. Chem. 25, 1739–1743 (1979).

    PubMed  CAS  Google Scholar 

  9. M. Brahm, Serum-aluminum in nondialyzed chronic uremic patients before and during treatment with aluminum-containing phosphate-binding gels, Clin. Nephrol. 25, 231–235 (1986).

    PubMed  CAS  Google Scholar 

  10. E. Burgess, Aluminum toxicity from oral sucrafalte therapy, Nephron 59, 523–524 (1991).

    PubMed  CAS  Google Scholar 

  11. D. A. Moneret-Vautrin, D. Burnel, D. Lakomski, et al., Allergie alimentaire par hypersensibilité retardée au nickel contaminant d’un Porto, Alim’Inter: le J. Allerg. Aliment. (CICBAA) 7(3), 115–117 (2002).

    Google Scholar 

  12. R. Seux, M. Clement, B. Grall, et al., Etude expérimentale des facteurs qui conditionnent le comportement de l’eau au contact des canalisations qui contiennent du plomb, Tech. Sci. Méthodes 3, 145–151 (1994).

    Google Scholar 

  13. H. Thiriat-Delon, J. Steffan, D. Nicolas, et al., Enquête de dépistage du saturnisme infantile d’origine hydrique dans les Vosges, Santé Publique 3, 263–273 (1994).

    Google Scholar 

  14. R. M. Galvin, Occurrence of metals in water: an overview, Water (SA) 22(1), 7–13 (1996).

    CAS  Google Scholar 

  15. Inserm, Plomb dans l’environnement. Quels risques pour la santé? Les Editions INSERM, Paris (1999).

    Google Scholar 

  16. P. Missy, Recherche de nouveaux chélateurs du manganèse en vue de la détoxication de l’organisme, etudes in vivo et in vitro, PhD thesis, Université de Metz, France (2001).

    Google Scholar 

  17. N. Arnich, M. C. Lanhers, L. Cunat, et al., Nickel absorption and distribution from rat small intestine in situ, Biol. Trace Element Res. 74, 141–151 (2000).

    Article  CAS  Google Scholar 

  18. L. Cunat, M. C. Lanhers, M. Joyeux, et al., Bioavailability and intestinal absorption of aluminum in rats: effects of aluminum compounds and some dietary constituents, Biol. Trace Element Res. 76, 31–55 (2000).

    Article  CAS  Google Scholar 

  19. S. D. Provan and R. Yokel, Aluminum uptake by the in situ rat gut preparation, J. Pharmacol. Exp. Ther. 245, 928–931 (1988).

    PubMed  CAS  Google Scholar 

  20. P. Mushak, Gastro-intestinal absorption of lead in children and adults: overview of biological and biophysico-chemical aspects, Chem. Spec. Bioavailab. 3(314), 87–104 (1991).

    CAS  Google Scholar 

  21. P. Slanina, Y. Falkeborn, W. Frech, et al., Aluminum concentrations in the brain and the bone of rats fed citric acid, aluminum citrate or aluminum hydroxyde, Food Chem. Toxicol. 22, 391–397 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. P. Slanina, W. Frech, A. Bernharson, et al., Influence of dietary factors on aluminum absorption and retention in the brain and bone of rats, Acta Pharmacol. Toxicol. 56, 331–336 (1985).

    Article  CAS  Google Scholar 

  23. P. O. Ganrot, Metabolism and possible health effects of aluminum, Environ. Health Perspect. 65, 363–441 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. R. A. Yokel and P. J. McNamara, Aluminum toxicokinetics: an updated minireview, Pharmacol. Toxicol. 88, 159–167 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. T. B. Drüeke, Intestinal absorption of aluminum in renal failure, Nephrol. Dial. Transpl. 17, 13–16 (2002).

    Google Scholar 

  26. C. A. Ecelbarger, G. G. McNeil, and J. L. Greger, Tissue aluminum accumulation and toxic consequences in rats chronically fed aluminum with and without citrate, J. Agr. Food Chem. 42, 2220–2224 (1994).

    Article  CAS  Google Scholar 

  27. J. Liu, G. F. Nordberg, and W. Frech, Aluminum accumulation in some tissues of rats with compromised kidney function induced by cadmium-metallothioneine, Pharmacol. Toxicol. 78, 289–295 (1996).

    PubMed  CAS  Google Scholar 

  28. P. Hartemann, Réflexion sur la fixation d’une concentration maximale admissible pour le plomb, communication, J. Techn., AGHTM, Mulhouse, France (1995).

    Google Scholar 

  29. O. Sinnaeve, M. Berthier, O. Guillard, et al., Le saturnisme chronique chez l’enfant aujour-d’hui. Une pathologie de la pauvreté et de l’exclusion, Arch. Pédiatr. 6(7), 762–767 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. F. W. Alexander, The uptake and excretion by children of lead and other contaminants, in Environmental Health Aspects of Lead: Proceedings of an International Symposium, D. Barth, A. Bertin, R. Engel, et al., eds., Commission of the European Communities, Luxembourg, pp. 319–331 (1972).

    Google Scholar 

  31. E. E. Ziegler, B. B. Edwards, R. L. Jensen, et al., Absorption and retention of lead by infants, Pediatr. Res. 12, 29–34 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. N. Gruden and M. Stantic, Transfer of lead through the rat’s intestinal wall, Sci. Total Environ. 3, 288–292 (1975).

    Article  PubMed  CAS  Google Scholar 

  33. J. A. Blair, I. P. L. Coleman, and M. E. Hilburn, The transport of the lead cation across the intestinal membrane, J. Physiol. 286, 343–350 (1979).

    PubMed  CAS  Google Scholar 

  34. P. R. Flanagan, D. L. Hamilton, J. Haist, et al., Interrelationships between iron and lead absorption in iron-deficient mice, Gastroenterology 77, 1074–1081 (1979).

    PubMed  CAS  Google Scholar 

  35. B. J. Aungst and H. L. Fung, Kinetic characterization of in vitro lead transport across the rat small intestine, Toxicol. Appl. Pharm. 61, 39–47 (1981).

    Article  CAS  Google Scholar 

  36. B. J. Aungst, J. A. Dolce, and H. L. Fung, The effect of dose on the disposition of lead in rats after intravenous and oral administration, Toxicol. Appl. Pharm. 61, 48–57 (1981).

    Article  CAS  Google Scholar 

  37. P. J. Bushnell and H. F. DeLuca, The effects of lactose on the absorption and retention of dietary lead, J. Nutr. 113, 365–378 (1983).

    PubMed  CAS  Google Scholar 

  38. H. M. Mÿkkanen and R. H. Wasserman, Gastrointestinal absorption of lead (203Pb) in chicks: influence of lead, calcium and age, J. Nutr. 111, 1757–1765 (1981).

    PubMed  Google Scholar 

  39. J. C. Barton, Active transport of lead-210 by everted segments of rat duodenum, Am. J. Physiol. 247, 193–198 (1984).

    Google Scholar 

  40. S. J. Henning and L. L. Leeper, Duodenal uptake of lead by suckling and weanling rats, Biol. Neonate 46, 27–35 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. K. A. Hussein, S. B. Coghill, G. Milne, et al., The uptake of lead by small intestine, colon and gallbladder of the guinea pig in vivo, Histochemistry 81, 591–596 (1984).

    Article  PubMed  CAS  Google Scholar 

  42. A. P. Morton, S. Partridge, and J. A. Blair, The intestinal uptake of lead, Chem. Br. 923–927 (1985).

  43. S. J. Henning and L. C. Cooper, Intestinal accumulation of lead salts and milk lead by suckling rats, Proc. Soc. Exp. Biol. Med. 187, 110–116 (1988).

    PubMed  CAS  Google Scholar 

  44. N. Karmakar and G. Jayaraman, Linear diffusion of lead in the intestinal wall: a theorical study, IMA J. Math. Appl. Med. Biol. 5, 33–43 (1988).

    Article  PubMed  CAS  Google Scholar 

  45. G. B. Freeman, J. D. Johnson, J. M. Killinger, et al., Relative bioavailability of lead from mining waste soil in rats, Fundam. Appl. Toxicol. 19(3), 388–398 (1992).

    Article  PubMed  CAS  Google Scholar 

  46. G. B. Freeman, J. A. Dill, J. D. Johnson, et al., Comparative absorption of lead from contaminated soil and lead salts by weanling Fisher 344 rats, Fundam. Appl. Toxicol. 33, 109–119 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. I. Palminger Hallen, S. Jönsson, M. O. Karlsson, et al., Toxicokinetics of lead in lactating and non lactating mice, Toxicol. Appl. Pharmacol. 136, 342–347 (1996).

    Article  Google Scholar 

  48. C. M. Dekaney, E. D. Harris, G. R. Bratton, et al., Lead transport in IEC-6 intestinal epithelial cells, Biol. Trace Element Res. 58(1–2), 13–24 (1997).

    Article  CAS  Google Scholar 

  49. G. B. Van Der Voet and F. A. DeWolff, Intestinal absorption of aluminum in rats: effect of intraluminal pH and aluminum concentration, J. Appl. Toxicol. 6, 37–41 (1986).

    Article  PubMed  Google Scholar 

  50. C. E. Carpenter and M. Ummadi, Iron status alters the adsorption, uptake, and absorption capacities of rat duodenum for ferrous and ferric iron, Nutr. Res. 15(8), 1129–1138 (1995).

    Article  CAS  Google Scholar 

  51. L. L. Hardwick, M. R. Jones, R. K. Buddington, et al., Comparison of calcium and magnesium absorption: in vivo and in vitro studies, Am. J. Physiol. 259, G720-G726 (1990).

    PubMed  CAS  Google Scholar 

  52. C. Bellaton, C. Roche, C. Remy, et al., Absorption du calcium, Gastroenterol. Clin. Biol. 16(3), 239–247 (1992).

    PubMed  CAS  Google Scholar 

  53. D. Pansu, C. Duffos, C. Bellaton, et al., Solubility and intestinal transit time limit calcium absorption in rats, J. Nutr. 123(8), 1396–1404 (1993).

    PubMed  CAS  Google Scholar 

  54. M. E. Conrad and J. C. Barton, Factors affecting the absorption and excretion of lead in the rat, Gastroenterology 47, 731–740 (1978).

    Google Scholar 

  55. M. J. Coogan, Analysis of a model to describe lead transport by the small intestine, PhD thesis, University of Aston, Birmingham, UK (1982).

    Google Scholar 

  56. E. Duizer, A. J. Gilde, C. H. M. Versantvoort, et al., Effects of cadmium chloride on the paracellular barrier function of intestinal epithelial cell lines, Toxicol. Appl. Pharm. 155, 117–126 (1999).

    Article  CAS  Google Scholar 

  57. P. Missy, M. C. Lanhers, L. Cunat, et al., Effects of subchronic exposure to manganese chloride on tissue distribution of three essentiel elements in rats, Int. J. Toxicol. 19, 313–321 (2000).

    Article  CAS  Google Scholar 

  58. P. Missy, M. C. Lanhers, Y. Grignon, et al., In vitro and in vivo studies on chelation of manganese, Hum. Exp. Toxicol. 19, 448–456 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. J. M. Haguenoer and D. Furon, Manganèse, in Toxicologie et Hygiène Industrielle, J. M. Haguenoer and D. Furon, eds., Technique & Documentation, Paris, Vol. 2, pp. 423–473 (1982).

    Google Scholar 

  60. W. N. Solomon, F. Viteri, T. R. Schuler, et al., Bioavailability of nickel in man: effects of foods and chemically-defined dietary constituents on the absorption of inorganic nickel, J. Nutr. 112, 39–59 (1982).

    Google Scholar 

  61. B. Sandström, L. Davidsson, A. Cederblad, et al., Manganese absorption and metabolism in man, Acta Pharmacol. Toxicol. 59, 60–62 (1986).

    Article  Google Scholar 

  62. J. H. Freeland-Graves, F. Behmardi, C. W. Bales, et al., Metabolic balance of manganese in young men consuming diets containing five levels of dietary manganese, J. Nutr. 118, 764–773 (1988).

    PubMed  CAS  Google Scholar 

  63. P. E. Johnson, G. I. Lykken, and E. D. Korynta, Absorption and biological half-life in humans of intrinsic and extrinsic 54Mn tracers from foods of plant origin, J. Nutr. 121, 711–717 (1991).

    PubMed  CAS  Google Scholar 

  64. C. D. Davis, L. Zech, and J. L. Greger, Manganese metabolism in rats: an improved methodology for assessing gut endogenous losses, Proc. Soc. Exp. Biol. Med. 202, 103–108 (1993).

    PubMed  CAS  Google Scholar 

  65. C. G. Elinder, L. Friberg, T. Kjellstrom, et al., Biological Monitoring of Metals, WHO, Geneva (1994).

    Google Scholar 

  66. J. W. Finley, J. S. Caton, Z. Zhou, et al., A surgical model for determination of true absorption and biliary excretion of manganese in conscious swine fed commercial diets, J. Nutr. 127(12), 2334–2341 (1997).

    PubMed  CAS  Google Scholar 

  67. A. B. R. Thomson and L. S. Valberg, Intestinal uptake of iron, cobalt and manganese in the iron-deficient rat, Am. J. Physiol. 223(6), 1327–1329 (1972).

    PubMed  CAS  Google Scholar 

  68. N. Gruden, Interrelationship of manganese and iron in rat’s duodenum, Nutr. Rep. Int. 15(5), 577–580 (1977).

    CAS  Google Scholar 

  69. N. Gruden, Suppression of transduodenal manganese transport by milk diet supplemented with iron, Nutr. Metab. 21, 305–309 (1977).

    PubMed  CAS  Google Scholar 

  70. S. G. Schafer and W. Forth, The influence of tin, nickel, and cadmium on the intestinal absorption of iron, Ecotox. Environ. Safety 7, 87–95 (1983).

    Article  CAS  Google Scholar 

  71. S. Spears, Nickel as a newer trace element in the nutrition of domestic animals, J. Anim. Sci. 59(3), 823–835 (1984).

    PubMed  CAS  Google Scholar 

  72. F. H. Nielsen, T. R. Shuler, T. G. McLeod, et al., Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in the rat, J. Nutr. 114, 1280–1288 (1984).

    PubMed  CAS  Google Scholar 

  73. K. M. Halpin, D. G. Chausow, and D. H. Baker, Efficiency of manganese absorption in chicks fed corn-soy and casein diets, J. Nutr. 116(9), 1747–1751 (1986).

    PubMed  CAS  Google Scholar 

  74. H. Kabata, K. I. Inui, and Y. Itokawa, The binding of manganese to the brush-border membrane vesicles of rat small intestine, Nutr. Res. 9, 791–799 (1989).

    Article  CAS  Google Scholar 

  75. E. L. B. Novell, N. Y. Rodrigues, G. S. Bianchi, et al., Influence of nickel chloride on iron deficiency in rats, Bol. Estud. Med. Biol. 37, 95–99 (1989).

    PubMed  CAS  Google Scholar 

  76. J. S. Oosting, A. G. Lemmens, G. J. Van den Berg, et al., Iron, copper, and zinc status in rats fed supplemental nickel, Biol. Trace Element Res. 31, 63–70 (1991).

    CAS  Google Scholar 

  77. C. D. Davis, T. L. Wolf, and J. L. Greger, Varying levels of manganese and iron affect absorption and gut endogenous losses of manganese by rats, J. Nutr. 122, 1300–1308 (1992).

    PubMed  CAS  Google Scholar 

  78. C. Kies, Bioavailability of manganese, in Manganese in Health and Disease, D. J. Klimis-Tavantzis, ed., CRC, Boca Raton, FL, pp. 39–58 (1994).

    Google Scholar 

  79. J. Tallkvist and H. Tjälve, Enhanced intestinal nickel absorption in iron-deficient rats, Pharmacol. Toxicol. 75(5), 244–249 (1994).

    Article  PubMed  CAS  Google Scholar 

  80. J. Tallkvist and H. Tjälve, Effect of dietary iron-deficiency on the disposition of nickel in rats, Toxicol. Lett. 92(2), 131–138 (1997).

    Article  PubMed  CAS  Google Scholar 

  81. M. W. Smith, K. B. Shenoy, E. S. Debnam, et al., Divalent metal inhibition of non-haem iron uptake across the rat duodenal brush border membrane, Br. J. Nutr. 88(1), 51–56 (2002).

    Article  PubMed  CAS  Google Scholar 

  82. R. A. Gibbons, S. N. Dixon, K. Hallis, et al., Manganese metabolism in cows and goats, Biochim. Biophys. Acta 444, 1–10 (1976).

    PubMed  CAS  Google Scholar 

  83. M. E. Andersen, J. M. Gearhart, and H. J. Clewell, Pharmacokinetic data needs to support risk assessments for inhaled and ingested manganese, Neurotoxicology 20(2–3), 161–172 (1999).

    PubMed  CAS  Google Scholar 

  84. S. Ferruzza, M. Scacchi, M. L. Scarino, et al., Iron and copper alter tight junction permeability in human intestinal Caco-2 cells by distinct mechanisms, Toxicol. In Vitro 16(4), 399–404 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. E. C. Foulkes and D. M. McMullen, On the mechanism of nickel absorption in the rat jejunum, Toxicology 38, 35–42 (1986).

    Article  PubMed  CAS  Google Scholar 

  86. J. Tallkvist and H. Tjälve, Nickel absorption from perfused rat jejunal and ileal segments, Pharmacol. Toxicol. 75(5), 233–243 (1994).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnich, N., Cunat, L., Lanhers, MC. et al. Comparative in situ study of the intestinal absorption of aluminum, manganese, nickel, and lead in rats. Biol Trace Elem Res 99, 157–171 (2004). https://doi.org/10.1385/BTER:99:1-3:157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:99:1-3:157

Index Entries

Navigation