Skip to main content
Log in

Resistance to oxidative stress in a freshwater fish Channa punctatus after exposure to inorganic arsenic

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The biochemical toxicity of arsenic trioxide (AsIII) in a freshwater edible fish Channa punctatus has been studied on exposures ranging from 7 to 90 d. The arsenic concentration increased exponentially in liver, kidney, gills, and muscles of fish up to 60 d of exposure to arsenic. However, arsenic concentration in these tissues declined at 90 d of exposure. This relationship between period of exposure and concentration of arsenic in selected tissues suggests an adaptive response of fish to arsenic. Furthermore, exposure to arsenic-induced lipid peroxidation in these organs increased initially at 7 d of exposure; however, it decreased up to 60 d of exposure but increased again at 90 d of treatment. Values of reduced glutathione (GSH) reflected the observations of lipid peroxidation. The role of GSH in this adaptive response has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lunde, Activation analysis of bromine, iodine and arsenic in oils from fishes, whale, phyto and zooplankton of marine and limnetic biotopes, Int. Rev. Gesselschaft Hydrobiol. 52, 265 (1967).

    Article  CAS  Google Scholar 

  2. A. A. Schroeder and J. J. Balassa, Abnormal trace metals in man: arsenic, J. Chronic Dis. 19, 85–106 (1966).

    Article  PubMed  CAS  Google Scholar 

  3. H. Windom, R. Stickney, and D. Smith, Arsenic, cadmium, copper, mercury and zinc in some species of north Atlantic finfish, J. Fish Res. Board Can. 30, 275–279 (1973).

    CAS  Google Scholar 

  4. N. Kotsanis and J. Iliopoulou-Georgudaki, Arsenic induced liver hyperplasia and kidney fibrosis in rainbow trout Oncorhynchus mykiss by microinjection technique: a sensitive animal bioassay for environmental metal-toxicity. Bull. Environ. Contam. Toxicol. 52, 169–178 (1999).

    Article  Google Scholar 

  5. E. T. Snow, Metal carcinogenesis: mechanistic implications, Pharmacol. Ther. 53, 31–65 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. T. Ochi, F. Nakajima, T. Sakurai, et al., Dimethylarsinic acid causes apoptosis in HL-60 cells via interaction with glutathione, Arch. Toxicol. 70, 815–821 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. R. A. Jordan and J. B. Shenkman, Relationship between malondialdehyde production and arachidonate consumption during NADPH-supported microsomal lipid peroxidation, Biochem. Pharmacol. 31, 1393–1400 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, et al., J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  9. G. L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  PubMed  CAS  Google Scholar 

  10. S. Ohmori, M. Ikeda, E. Kasahara, et al., A colorimetric determination of total glutathione based on its c-terminal glycine residue and its application to blood, liver and yeast, Chem. Pharm. Bull. 29(5), 1355–1360 (1981).

    PubMed  CAS  Google Scholar 

  11. R. A. Fischer, Statistical Methods for Research Workers, 11th ed., Oliver and Boyd, London (1950).

    Google Scholar 

  12. J. D. Peden, J. A. Crothers, C. E. Waterfall, et al., Heavy metals in Somerset marine organisms, Marine Pollut. Bull. 4, 7–9 (1973).

    Article  CAS  Google Scholar 

  13. B. A. Fowler, R. C. Fay, R. L. Walter, et al., Levels of toxic metals in marine organisms collected from south California coastal waters, Environ. Health Perspect. 12, 71–76 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. H. Yamauchi and Y. Yamamura, Metabolism and excretion of orally administrated arsenic trioxide in the hamster, Toxicology 34, 113–121 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. F. Bertelero, E. Marafante, J. Edel Rade, et al., Biotransformation and intracellular binding of arsenic in tissues of rabbits after intraperitoneal administration of 74As labeled arsenite, Toxicology 20, 35–44 (1981).

    Article  Google Scholar 

  16. J. T. Stevens, L. L. Hall, J. D. Farmer, et al., Disposition of 14C and/or 74As-cacodylic acid in rats after intravenous, intrathecal, or peroral administration, Environ. Health Perspect. 19, 151–153 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. M. Vahter, Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats, Environ. Res. 25, 286–293 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. D. R. Germolec, J. Spalding, H. S. Yu, et al., Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors, Am. J. Pathol. 153, 1775–1785 (1998).

    PubMed  CAS  Google Scholar 

  19. M. P. Waalkes, M. J. Harvey, and C. D. Klaassen, Relative in vitro affinity of hepatic metallothionein for metals, Toxicol. Lett. 20, 33–39 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. F. Ayala-Feirro, D. S. Barber, L. T. Rael, et al., In vitro tissue specificity for arsenic and arsenite toxicity in the rat, Toxicol. Sci. 52, 122–125 (1999).

    Article  Google Scholar 

  21. H. V. Aposhian, Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity, Annu. Rev. Pharmacol. Toxicol. 37, 397–419 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. N. Scott, K. M. Hattelid, N. E. Mackenzie, et al., Reaction of arsenic(III) and arsenic(V) species with glutathione, Chem. Res. Toxicol. 6, 102–106 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. S. Ahmad, W. A. Anderson, and K. T. Kitchin, Dimethylarsinic acid effects on six biochemical parameters in B6C3FI mice, Toxicol. Sci. 48(Suppl.) 353, (1999).

    Google Scholar 

  24. S. J. Flora, S. C. Pant, P. R. Malhotra, et al., Biochemical and histopathological changes in arsenic intoxicated rats coexposed to ethanol, Alcohol 14, 563–568 (1991).

    Article  Google Scholar 

  25. A. Santra, A. Maiti, and D. N. G. Mazumder, The mechanism of liver damage due to chronic feeding of arsenic-contaminated water in mice, Arsenic Health Effects Symposium, Hunt Valley (1997), abstract 9.

  26. W. C. Chang, S. H. Chen, H. L. Wu, et al., Cytoplasmic effect of reduced glutathione in arsenical-induced endothelial cell injury, Toxicology 69, 101–110 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. W. Chen, J. L. Martindale, N. J. Holbrook, et al., Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor, Mol. Cell. Biol. 18, 5178–5188 (1998).

    PubMed  CAS  Google Scholar 

  28. A. B. Fischer, J. P. Buchet, and R. R. Lauwerys, Arsenic uptake, cytotoxicity and detoxification studied in mammalian cells in culture, Arch. Toxicol. 57, 168–172 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. M. Schuliga, S. Chouchane, and E. T. Snow, Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic, Toxicol. Sci. 70, 183–192 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. V. Bencko and K. Symon, Dynamics of arsenic cumulation in hairless mice after peroral administration, J. Hyg. Epidemiol. Microbiol. Immunol. 13, 248–253 (1969a).

    PubMed  CAS  Google Scholar 

  31. V. Bencko, V. Cmarko, and S. Palan, The cumulation dynamics of arsenic in the tissue of rabbits exposed in the area of ENO plant, Cesk. Hyg. 13, 18–22 (1968).

    CAS  Google Scholar 

  32. K. Katsura, Medicolegal studies of arsenic poisoning II. Distribution of arsenic in visceral organs and arsenic concentrations of bone and hair in arsenic poisoning, Shikoku Igaku Zasshi. 12, 706–720 (1958).

    CAS  Google Scholar 

  33. L. S. Tisa and B. P. Rosen, Molecular characterization of an anion pump, J. Biol. Chem. 265, 190–194 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, T., Singhal, R. & Rana, S.V.S. Resistance to oxidative stress in a freshwater fish Channa punctatus after exposure to inorganic arsenic. Biol Trace Elem Res 98, 63–72 (2004). https://doi.org/10.1385/BTER:98:1:63

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:1:63

Index Entries

Navigation