Skip to main content
Log in

Use of rubidium, manganese, and zinc as tracers to measure intestinal permeability by PIXE analysis

Basal study in an experimental enteritis model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Intestinal permeability has been suggested to be closely linked with the etiology or activity of Crohn’s disease. However, current methods for measurement of intestinal permeability are too laborious for routine examination, as they require urine collection and/or use of radioisotopes. The present study was performed to develop a more convenient and safer method for assessing intestinal permeability using blood samples rather than urine. Rats with indomethacin-induced enteritis were orally administered Rb, Mn, and Zn as tracers. Intestinal permeability was determined by assaying the levels of Rb, Mn, and Zn in blood samples by particle-induced X-ray emission (PIXE). The distributions of Rb, Mn, and Zn in the small intestine after administration were analyzed by micro-PIXE. The conventional PIXE analysis showed that the levels of Rb and Zn in the blood in the enteritis group were correlated with the grade of enteritis. The micro-PIXE analysis showed that Rb, Mn, and Zn were translocated into the wall of the proximal small intestine 5 min after administration, and this effect was more conspicuous in the enteritis group than in controls. Analysis of blood or small intestine tissue samples using the PIXE allows determination of both intestinal permeability and the route of permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hollander, C. M. Vadheim, E. Brettholz, et al., Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor, Ann. Intern. Med. 105, 883–885 (1986).

    PubMed  CAS  Google Scholar 

  2. K. D. Katz, D. Hollander, C. M. Vadheim, et al., Intestinal permeability in patients with Crohn’s disease and their healthy relatives, Gastroenterology 97, 927–931 (1989).

    PubMed  CAS  Google Scholar 

  3. G. R. May, L. R. Sutherland, and J. B. Meddings, Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 104, 1327–1332 (1993).

    Google Scholar 

  4. M. Peeters, B. Geypens, D. Claus, et al., Clustering of increased small intestinal permeability in families with Crohn’s disease, Gastroenterology 113, 802–807 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. J. D. Soderholm, G. Olaison, E. Lindberg, et al., Different intestinal permeability patterns in relatives and spouses of patients with Crohn’s disease: an inherited defect in mucosal defence? Gut 44, 96–100 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. V. S. Chadwick, S. F. Phillips, and A. F. Hofmann, Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man and animals, Gastroenterology 73, 247–251 (1977).

    PubMed  CAS  Google Scholar 

  7. I. Cobden, R. J. Dickinson, J. Rothwell, et al., Intestinal permeability assessed by excretion ratios of two molecules: results in coeliac disease, Br. Med. J. 2, 1060 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. I. Bjarnason, T. J. Peters, and N. Veall, A persistent defect in intestinal permeability in coeliac disease demonstrated by a 51Cr-labelled EDTA absorption test, Lancet 1, 323–325 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. S. A. E. Johansson and T. B. Johansson, Analytical application of particle induced X-ray emission, Nucl. Instr. Methods 137, 473–516 (1976).

    Article  CAS  Google Scholar 

  10. S. Monaro and R. Lecomte R, Trace element detection by the particle induced X-ray emission process, Int. J. Nucl. Med. Biol. 8, 1–16 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. S. A. E. Johansson and J. L. Cambel, PIXE: A Novel Technique for Elemental Analysis, Wiley, New York (1988).

    Google Scholar 

  12. K. Sera, T. Yanagisawa, H. Tsunoda, et al., Bio-PIXE at the Takizawa facility, Int. J. PIXE 2, 325–330 (1992).

    Article  Google Scholar 

  13. Z. Szokefalvi-Nagy, Applications of PIXE in the life sciences, Biol. Trace Element Res. 43–45, 73–78 (1994).

    Article  Google Scholar 

  14. K. Sera, S. Futatsugawa, K. Matsuda, et al., Standard-free method of quantitative analysis for bio-samples, Int. J. PIXE 6, 467–481 (1996).

    Article  CAS  Google Scholar 

  15. H. Imaseki and M. Yukawa, Introduction of PIXE analysis system in NIRS, Int. J. PIXE 10, 77–90 (2000).

    CAS  Google Scholar 

  16. T. Yamada, E. Deitch, R. D. Specian, et al., Mechanisms of acute and chronic intestinal inflammation induced by indomethacin, Inflammation 17, 641–662 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. G. Nygard, A. Anthony, C. Piasecki, et al., Acute indomethacin-induced jejunal injury in the rat: early morphological and biochemical changes, Gastroenterology 106, 567–575 (1994).

    PubMed  CAS  Google Scholar 

  18. C. O. Elson, R. B. Sartor, G. S. Tennyson, et al., Experimental models of inflammatory bowel disease, Gastroenterology 109, 1344–1367 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. S. Colpaert, Z. Liu, B. De Greef, et al., Effects of anti-tumour necrosis factor, interleukin-10 and antibiotic therapy in the indometacin-induced bowel inflammation rat model, Aliment. Pharmacol. Ther. 15, 1827–1836 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. I. Tamanoi, A. Nakamura, K. Hoshikawa, et al., Changes of blood plasma element contents in X-ray irradiated mice by PIXE analysis, Int. J. PIXE 5, 85–95 (1995).

    Article  CAS  Google Scholar 

  21. I. Tamanoi, A. Nakamura, K. Hoshikawa, et al., PIXE studies on potassium and calcium in mouse blood plasma after transplantation of EL-4 tumor cells, Int. J. PIXE 5, 255–264 (1995).

    Article  CAS  Google Scholar 

  22. K. Nakao, Y. Suzuki, R. Sato, Y. Saito, et al., Possible application of PIXE method to intestinal permeability measurement, Int. J. PIXE 7, 219–231 (1997).

    Article  CAS  Google Scholar 

  23. M. Yukawa, H. Imaseki, and O. Yukawa, Micro-beam scanning PIXE in NIRS and the application tests to biological samples, Int. J. PIXE 10, 71–75 (2000).

    Article  CAS  Google Scholar 

  24. D. Hollander, Crohn’s disease—a permeability disorder of the tight junction? Gut 29, 1621–1624 (1988).

    PubMed  CAS  Google Scholar 

  25. M. Montalto, G. Veneto, L. Cuoco, et al., La permeabilita intestinale, Rec. Prog. Med. 88, 140–147 (1997).

    CAS  Google Scholar 

  26. E. J. Irvine and J. K. Marshall, Increased intestinal permeability precedes the onset of Crohn’s disease in a subject with familial risk, Gastroenterology 119, 1740–1744 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. J. Wyatt, H. Vogelsang, W. Hubl, et al., Intestinal permeability and the prediction of relapse in Crohn’s disease, Lancet 341, 1437–1439 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. R. D’Inca, V. Di Leo, G. Corrao, et al., Intestinal pemleability test as a predictor of clinical course in Crohn’s disease, Am. J. Gastroenterol. 94, 2956–2960 (1999).

    PubMed  CAS  Google Scholar 

  29. R. J. Hilsden, J. B. Meddings, J. Hardin, et al., Intestinal permeability and postheparin plasma diamine oxidase activity in the prediction of Crohn’s disease relapse, Inflamm. Bowel Dis. 5, 85–91 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. I. D. Arnott, K. Kingstone, and S. Ghosh, Abnormal intestinal permeability predicts relapse in inactive Crohn disease, Scand. J. Gastroenterol. 35, 1163–1169 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. L. Pironi, M. Miglioli, E. Ruggeri, et al., Relationship between intestinal permeability to [51Cr]EDTA and inflammatory activity in asymptomatic patients with Crohn’s disease, Dig. Dis. Sci. 35, 580–588 (1990).

    Article  Google Scholar 

  32. S. Somasundaram, G. Sigthorsson, R. J. Simpson, et al., Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat, Aliment. Pharmacol. Ther. 14, 639–650 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. J. Deflangre, G. Weber, J. M. Delbrouck, et al., Assay of trace elements in the serum by PIXE method in patients with Crohn’s disease, Gastroenterol. Clin. Biol. 9, 719–725 (1985).

    Google Scholar 

  34. Y. Horino, Y. Mokuno, A. Kinomura, et al., Micro-PIXE (particle induced X-ray emission) analysis of aluminum in rat-liver using MeV heavy ion microprobes, Scanning Microsc. 7, 1215–1220 (1993).

    PubMed  CAS  Google Scholar 

  35. J. R. Moran and J. C. Lewis, The effects of severe zinc deficiency on intestinal permeability: an ultrastructural study, Pediatr. Res. 19, 968–973 (1985).

    Article  PubMed  CAS  Google Scholar 

  36. G. C. Sturniolo, V. Di Leo, A. Ferronato, et al., Zinc supplementation tightens “leaky gut” in Crohn’s disease, Inflamm. Bowel Dis. 7, 94–98 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakao, K., Suzuki, Y., Imaseki, H. et al. Use of rubidium, manganese, and zinc as tracers to measure intestinal permeability by PIXE analysis. Biol Trace Elem Res 98, 27–43 (2004). https://doi.org/10.1385/BTER:98:1:27

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:1:27

Index Entries

Navigation