Skip to main content
Log in

Interrelations between ceruloplasmin and Fe status during human pregnancy

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It is well established that Fe and ceruloplasmin interact in animals and in in vitro models. However, Fe-mediated regulation of ceruloplasmin has never been investigated in humans. In an observational study, 53 pregnant women aged 19–39 yr (29.8±0.7 yr, mean ± SEM) were recruited at the Aberdeen Antenatal Clinic, Aberdeen Maternity Hospital, UK. All requirements for local ethical committees were followed. Venous blood samples were taken from each woman at 34 wk gestation for measurement of Fe status and ceruloplasmin. Various parameters were used to test for Fe status. The most sensitive one appeared to be soluble transferrin receptor, which increased with parity. In the population studied, there was no relationship between hemoglobin or ferritin and serum ceruloplasmin. However, using soluble transferrin receptor (sTfR) levels, we were able to demonstrate an inverse linear relationship (r=0.37, p=0.021, n=41) between Fe status and ceruloplasmin. Fe supplementation, number of previous pregnancies, and smoking habits did not affect this relationship. Our data support in vitro results showing regulation of ceruloplasmin by Fe and also suggest that the interactions between Fe and ceruloplasmin should be considered when Fe supplementation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Humphries, B. W. Young, M. Phillippo, et al., The effects of iron and molybdenum on copper metabolism in cattle, Proc. Nutr. Soc. 40, 68A (1981).

    Google Scholar 

  2. W. R. Humphries, M. Phillippo, B. W. Young, et al., The influence of dietary iron and molybdenum on copper metabolism in calves, Br. J. Nutr. 49, 77 (1983).

    Article  PubMed  CAS  Google Scholar 

  3. M. A. Johnson and C. L. Murphy, Adverse effects of high dietary iron and ascorbic acid on copper status in copper-deficient and copper-adequate rats, Am. J. Clin. Nutr. 47, 96 (1988).

    PubMed  CAS  Google Scholar 

  4. A. B. Abdel-Mageed, R. Welti, F. W. Oehme, et al., Perinatal hypocuprosis affects synthesis and composition of neonatal lung collagen, elastin, and surfactant, Am. J. Physiol. 267, L679 (1994).

    Google Scholar 

  5. C. K. Mukhopadhyay, Z. K. Attieh, and P. L. Fox, Role of ceruloplasmin in cellular iron uptake, Science 279, 714 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. R. Danzeisen, C. Fosset, Z. Chariana, et al., Placental ceruloplasmin homolog is regulated by iron and copper and is implicated in iron metabolism, Am. J. Physiol. Cell Physiol. 282, 472 (2002).

    Google Scholar 

  7. G. R. Lee, S. Nacht, J. N. Lukens, et al., Iron metabolism in copper-deficient swine, J. Clin. Invest. 47, 2058 (1968).

    PubMed  CAS  Google Scholar 

  8. H. A. Ragan, S. Nacht, G. R. Lee, et al., Effect of ceruloplasmin on plasma iron in copper-deficient swine, Am. J. Physiol. 217, 1320 (1969).

    PubMed  CAS  Google Scholar 

  9. H. P. Roeser, G. R. Lee, S. Nacht, et al., The role of ceruloplasmin in iron metabolism, J. Clin. Invest. 49, 2408 (1970).

    PubMed  CAS  Google Scholar 

  10. L. Gambling, R. Danzeisen, S. Gair, et al., Effect of iron deficiency on placental transfer of iron and expression of iron transport proteins in vivo and in vitro, Biochem. J. 356, 883 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. C. P. Gibbs, Maternal physiology, Clin. Obstet. Gynecol. 24, 525 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. O. Koller, The clinical significance of hemodilution during pregnancy, Obstet. Gynecol. Surveys 37, 649 (1982).

    Article  CAS  Google Scholar 

  13. T. H. Bothwell, Iron requirements in pregnancy and strategies to meet them, Am. J. Clin. Nutr. 72, 257S (2000).

    Google Scholar 

  14. R. Gofin, B. Adler, and H. Palti, Effectiveness of iron supplementation compared to iron treatment during pregnancy, Public Health 103, 139 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. J. Liljestrand, S. Bergstrom, and G. Birgegard, Anaemia of pregnancy in Mozambique, Trans. R. Soc. Trop. Med. Hyg. 80, 249 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. A. C. Looker, P. R. Dallman, M. D. Carroll, et al., Prevalence of iron deficiency in the United States, JAMA 277, 973 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. K. Singh, Y. F. Fong, and S. Arulkumaran, Anaemia in pregnancy: a cross-sectional study in Singapore, Eur. J. Clin. Nutr. 52, 65 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. K. Takagi, M. Nakao, Y. Ogura, T. Nabeshima, and A. Kunii, Sensitive colorimetric assay of serum diamine oxidase. Clin. Chim. Acta 226, 67 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. F.W. Sunderman and S. Nomoto, Measurement of human serum ceruloplasmin by its p-phenylenadiamine oxidase activity. Clin. Chem. 16, 903 (1970).

    PubMed  CAS  Google Scholar 

  20. T. H. Bothwell, R. W. Charlton, J. D. Cook, et al., Iron requirements in pregnancy and strategies to meet them, Am. J. Clin. Nutr. 72, 257S (2000).

    Google Scholar 

  21. WHO, Iron deficiency Anaemia (IDA), World Health Organisation, Geneva (2000).

    Google Scholar 

  22. WHO, Micronutrient Deficiencies: Battling Iron Deficiency Anaemia, World Health Organisation, Geneva (2001).

    Google Scholar 

  23. A. F. Fleming, Tropical obstetrics and gynaecology. 1. Anaemia in pregnancy in tropical Africa, Trans. R. Soc. Trop. Med. Hyg. 83, 441 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. A. F. Fleming, The aetiology of severe anaemia in pregnancy in Ndola, Zambia, Ann. Trop. Med. Parasitol. 83, 37 (1989).

    PubMed  CAS  Google Scholar 

  25. S. Khanna, B. Dube, and S. Kumar, Anaemia of pregnancy in northern India. Nature and therapeutic follow-up, Trop. Geogr. Med. 29, 24 (1977).

    PubMed  CAS  Google Scholar 

  26. J. Thomson, Anaemia in pregnant women in eastern Caprivi, Namibia, S. Afr. Med. J. 87, 1544 (1997).

    PubMed  CAS  Google Scholar 

  27. N. G. Carretti, A. G. Eremita, D. Paternoster, et al., Iron balance in pregnancy in relation to anemia, Clin. Exp. Obstet. Gynecol. 19, 218 (1992).

    PubMed  CAS  Google Scholar 

  28. A. J. Dabbagh, C. W. Trenam, C. J. Morris, et al., Iron in joint inflammation, Ann. Rheum. Dis. 52, 67 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. D. A. Lipschitz, J. D. Cook, and C. A. Finch, A clinical evaluation of serum ferritin as an index of iron status, N. Engl. J. Med. 290, 1213 (1974).

    Article  PubMed  CAS  Google Scholar 

  30. M. T. Carriaga, B. S. Skikne, B. Finley, et al., Serum transferrin receptor for the detection of iron deficiency in pregnancy, Am. J. Clin. Nutr. 54, 1077 (1991).

    PubMed  CAS  Google Scholar 

  31. N. Ahluwalia, Diagnostic utility of serum transferrin receptors measurement in assessing iron status, Nutr. Rev. 56, 133 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. H. Khumalo, Z. A. Gomo, V. M. Moyo, et al., Serum transferrin receptors are decreased in the presence of iron overload, Clin. Chem. 44, 40 (1998).

    PubMed  CAS  Google Scholar 

  33. Y. Kohgo, Y. Niitsu, and Y. Nishisato, Quantitation and characterisation of serum transferrin receptor in patients with anemias and polycythemias, Jpn. J. Med. 27, 64 (1988).

    PubMed  CAS  Google Scholar 

  34. U. Rusia, C. Flowers, N. Madan, et al., Serum transferrin receptors in detection of iron deficiency in pregnancy, Ann. Hematol. 78, 358 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. H. C. Lukaski, L. M. Klevay, and D. B. Milne, Effects of dietary copper on human autonomic cardiovascular function, Eur. J. Appl. Physiol. Occup. Physiol. 58, 74 (1988).

    Article  PubMed  CAS  Google Scholar 

  36. D. B. Milne and P. E. Johnson, Assessment of copper status: effect of age and gender on reference ranges in healthy adults, Clin. Chem. 39, 883 (1993).

    PubMed  CAS  Google Scholar 

  37. A. A. Jones, R. A. DiSilvestro, M. Coleman, et al., Copper supplementation of adult men: effects on blood copper enzyme activities and indicators of cardiovascular disease risk, Metabolism 46, 1380 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. C. A. Kehoe, M. S. Faughnan, W. S. Gilmore, et al., Plasma diamine oxidase activity is greater in copper-adequate than copper-marginal or copper-deficient rats, J. Nutr. 130, 30 (2000).

    PubMed  CAS  Google Scholar 

  39. M. Hilton, D. C. Spenser, P. Ross, et al., Characterisation of the copper uptake mechanism and isolation of the ceruloplasmin receptor/copper transporter in human placental vesicles, Biochim. Biophys. Acta 1245, 153 (1995).

    PubMed  Google Scholar 

  40. S. H. Lee, R. Lancey, A. Montaser, et al., Ceruloplasmin and copper transport during the latter part of gestation in the rat, Proc. Soc. Exp. Biol. Med. 203, 428 (1993).

    PubMed  CAS  Google Scholar 

  41. L. Gambling, S. Gair, and H. J. McArdle, The effect of maternal iron deficiency on fetal growth, iron and copper metabolism in the rat, J. Physiol. 528P, 5S (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fosset, C., McGaw, B.A., Abramovich, D. et al. Interrelations between ceruloplasmin and Fe status during human pregnancy. Biol Trace Elem Res 98, 1–12 (2004). https://doi.org/10.1385/BTER:98:1:01

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:1:01

Index Entries

Navigation