Skip to main content
Log in

Iron utilization and liver mineral concentrations in rats fed safflower oil, flaxseed oil, olive oil, or beef tallow in combination with different concentrations of dietary iron

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 µg/g iron in combination with saffower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. K. Amine and D. M. Hegsted, Effect of dietary carbohydrates and fats on inorganic iron absorption, J. Agric. Food Chem. 23, 204–208 (1975).

    Article  PubMed  CAS  Google Scholar 

  2. E. A. Droke and H. C. Lukaski, Dietary iron and fat affect nonheme iron absorption, iron status, and enterocyte aconitase activity and iron concentration in rats, Nutr. Res. 16, 977–989 (1996).

    Article  CAS  Google Scholar 

  3. J. Bowering, G. A. Masch, and A. R. Lewis, Enhancement of iron absorption in iron depleted rats by increasing dietary fat, J. Nutr. 107, 1687–1693 (1977).

    PubMed  CAS  Google Scholar 

  4. P. E. Johnson, H. C. Lukaski, and T. D. Bowman, Effects of level and saturation of fat and iron level and type in the diet on iron-absorption and utilization by the rat, J. Nutr. 117, 501–507 (1987).

    PubMed  CAS  Google Scholar 

  5. M. Kapsokefalou and D. Miller, Lean beef and beef fat interact to enhance nonheme iron absorption in rats, J. Nutr. 123, 1429–1434 (1993).

    PubMed  CAS  Google Scholar 

  6. M. L. Pabon and B. Lonnerdal, Effects of type of fat in the diet on iron bioavailability assessed in suckling and weanling rats, J. Trace Elements Med. Biol. 15, 18–23 (2001).

    Article  CAS  Google Scholar 

  7. W. van Dokkum, F. A. Cloughley, K. F. A. M. Hulsof, et al., Effect of variations in fat and linoleic acid intake on the calcium, magnesium and iron balance of young men, Ann. Nutr. Metab. 27, 361 (1983).

    Article  PubMed  Google Scholar 

  8. H. C. Lukaski, W. W. Bolonchuk, L. M. Klevay, et al., Interactions among dietary fat, mineral status, and performance of endurance athletes: a case study, Int. J. Sport Nutr. Exerc. Metab. 11, 186–198 (2001).

    PubMed  CAS  Google Scholar 

  9. M. Fields and C. G. Lewis, Cholesterol-lowering nature of unsaturated fat in rats may be due to its inability to increase hepatic iron, Met.-Clin. Exp. 48, 200–204 (1999).

    CAS  Google Scholar 

  10. P. E. Johnson, H. C. Lukaski, and E. D. Korynta, Effects of stearic-acid and beef tallow on iron utilization by the rat, Proc. Soc. Exp. Biol. Med. 200, 480–486 (1992).

    PubMed  CAS  Google Scholar 

  11. G. A. Rao, R. T. Crane, and E. C. Larkin, Reduction of hepatic stearoyl-CoA desaturase activity in rats fed iron-deficient diets, Lipids 18, 537–575 (1983).

    Google Scholar 

  12. A. J. Ingram, A. Parbtani, W. F. Clark, et al., Effect of flaxseed and flax oil diets in a rat-5/6 renal ablation model, Am. J. Kidney Dis. 25, 320–329 (1995).

    PubMed  CAS  Google Scholar 

  13. L. S. Rallidis, G. Paschos, G. K. Liakos, et al., Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients, Atherosclerosis 167, 237–242 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. W. F. Clark, C. Kortas, A. P. Heidenheim, et al., Flaxseed in lupus nephritis: a two-year nonplacebo-controlled crossover study, J. Am. Coll. Nutr. 20, 143–148 (2001).

    PubMed  CAS  Google Scholar 

  15. T. Ranich, S. J. Bhathena, and M. T. Velasquez, Protective effects of dietary phytoestrogens in chronic renal disease, J. Renal Nutr. 11, 183–193 (2001).

    Article  CAS  Google Scholar 

  16. M. Jelinska, A. Tokarz, R. Oledzka, et al., Effects of dietary linseed, evening primrose or fish oils on fatty acid and prostaglandin E-2 contents in the rat livers and 7,12-dimethylbenz[a]anthracene-induced tumours, Biochim. Biophys. Acta—Mol. Basis Dis. 1637, 193–199 (2003).

    CAS  Google Scholar 

  17. L. U. Thompson, S. E. Rickard, L. J. Orcheson, et al., Flaxseed and its lignan and oil components reduce mammary tumor growth at a late stage of carcinogenesis, Carcinogenesis 17, 1373–1376 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. W. J. Craig, Health-promoting properties of common herbs, Am. J. Clin. Nutr. 70, 491S-499S (1999).

    PubMed  CAS  Google Scholar 

  19. D. J. A. Jenkins, C. W. C. Kendall, E. Vidgen, et al., Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial, Am. J. Clin. Nutr. 69, 395–402 (1999).

    PubMed  CAS  Google Scholar 

  20. X. Llor, E. Pons, A. Roca, et al., The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes, Clin. Nutr. 22, 71–79 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. G. Macquartmoulin, E. Riboli, J. Cornee, et al., Case-control study on colorectal-cancer and diet in Marseilles, Int. J. Cancer 38, 183–191 (1986).

    Article  CAS  Google Scholar 

  22. J. J. Moreno and M. T. Mitjavila, The degree of unsaturation of dietary fatty acids and the development of atherosclerosis. [review], J. Nutr. Biochem. 14, 182–195 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. C. Milin, R. Domitrovic, M. Tota, et al., Effect of olive oil- and corn oil-enriched diets on the tissue mineral content in mice, Biol. Trace Element Res. 82, 201–210 (2001).

    Article  CAS  Google Scholar 

  24. U. S. Babu, G. V. Mitchell, P. Wiesenfeld, et al., Nutritional and hematological impact of dietary flaxseed and defatted flaxseed meal in rats, Int. J. Food Sci. Nutr. 51, 109–117 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. A. Hill, K. Patterson, C. Veillon, et al., Digestion of biological materials for mineral analyses using a combination of wet and dry ashing, Anal. Chem. 58, 2340–2342 (1986).

    Article  CAS  Google Scholar 

  26. J. W. Cowan, M. Esfahani, J. P. Salji, et al., Effect of phytate on iron absorption in the rat, J. Nutr. 90, 423–427 (1966).

    PubMed  CAS  Google Scholar 

  27. A. D. Shotton and E. A. Droke, Dietary fat and iron modify immune function, FASEB J. 14, A239 (2000).

    Google Scholar 

  28. H. Y. Tichelaar, C. M. Smuts, R. Gross, et al., The effect of dietary iron deficiency on the fatty acid composition of plasma and erythrocyte membrane phospholipids in the rat, Prostagladins Leukocytes Essent. Fatty Acids 56, 229–233 (1997).

    Article  CAS  Google Scholar 

  29. M. Qian and J. W. Eaton, Iron translocation by free fatty acids, Am. J. Pathol. 139, 1425–1434 (1991).

    PubMed  CAS  Google Scholar 

  30. C. N. Kuratko and B. C. Pence, Dietary lipid and iron modify normal colonic mucosa without affecting phospholipase A2 activity, Cancer Lett. 95, 181–187 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. J. W. Finley and C. D. Davis, Manganese absorption and retention in rats is affected by the type of dietary fat, Biol. Trace Element Res. 82, 143–158 (2001).

    Article  CAS  Google Scholar 

  32. H. K. Onderka and A. Kirksey, Influence of dietary lipids on iron and copper levels of rats administered oral contraceptives, J. Nutr. 105, 1269–1277 (1975).

    PubMed  CAS  Google Scholar 

  33. H. C. Lukaski, L. M. Klevay, W. W. Bolonchuk, et al., Influence of dietary lipids on iron, zinc, and copper retention in trained athletes, Fed. Proc. 41, 275 (1982).

    Google Scholar 

  34. A. Mahoney, B. Farmer, and D. Hendricks, Effects of level and source of dietary fat on the bioavailability of iron from turkey meat for the anemic rat, J. Nutr. 110, 1703–1708 (1980).

    PubMed  CAS  Google Scholar 

  35. M. Fields and C. G. Lewis, Level of dietary iron, not type of dietary fat, is hyperlipidemic in copper-deficient rats, J. Am. Coll. Nutr. 18, 353–357 (1999).

    PubMed  CAS  Google Scholar 

  36. N. L. Cohen, C. L. Keen, B. Lonnerdal, et al., Effects of varying dietary iron on the expression of copper deficiency in the growing rat: anemia, ferroxidase I and II, tissue trace elements, ascorbic acid, and xanthine dehydrogenase, J. Nutr. 115, 633–649 (1985).

    PubMed  CAS  Google Scholar 

  37. C. A. Owen, Jr., Effects of iron on copper metabolism and copper on iron metabolism in rats, Am. J. Physiol. 224, 514–518 (1973).

    PubMed  CAS  Google Scholar 

  38. S. Yu, C. E. West, and A. C. Beynen, Increasing intakes of iron reduce status, absorption and biliary excretion of copper in rats, Br. J. Nutr. 71, 887–895 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. H. Lukaski, G. I. Lykken, and L. M. Klevay, Simultaneous determination of copper, iron, and zinc absorption using gamma ray spectroscopy: fat effects, Nutr. Rep. Int. 33, 139–146 (1986).

    CAS  Google Scholar 

  40. S. M. Lynch and J. J. Strain, Dietary saturated fat or polyunsaturated fat and copper deficiency in the rat, Biol. Trace Element Res. 22, 131–139 (1989).

    Article  CAS  Google Scholar 

  41. A. B. Thomson and L. S. Valberg, Intestinal uptake of iron, cobalt, and manganese in the iron-deficient rat, Am. J. Physiol. 223, 1327–1329 (1972).

    PubMed  CAS  Google Scholar 

  42. M. Diez-Ewald, L. R. Weintraub, and W. H. Crosby, Interrelationship of iron and manganese metabolism, Proc. Soc. Exp. Biol. Med. 129, 448–451 (1968).

    PubMed  CAS  Google Scholar 

  43. L. Rossanderhulten, M. Brune, B. Sandstrom, et al., Competitive-inhibition of iron-absorption by manganese and zinc in humans, Am. J. Clin. Nutr. 54, 152–156 (1991).

    CAS  Google Scholar 

  44. P. R. Flanagan, J. Haist, and L. S. Valberg, Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium, J. Nutr. 110, 1754–1763 (1980).

    PubMed  CAS  Google Scholar 

  45. C. D. Davis, T. L. Wolf, and J. L. Greger, Varying levels of manganese and iron affect absorption and gut endogenous losses of manganese by rats, J. Nutr. 122, 1300–1308 (1992).

    PubMed  CAS  Google Scholar 

  46. J. M. Peres, F. Bureau, D. Neuville, et al., Inhibition of zinc absorption by iron depends on their ratio, J. Trace Elements Med. Biol. 15, 237–241 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shotton, A.D., Droke, E.A. Iron utilization and liver mineral concentrations in rats fed safflower oil, flaxseed oil, olive oil, or beef tallow in combination with different concentrations of dietary iron. Biol Trace Elem Res 97, 265–277 (2004). https://doi.org/10.1385/BTER:97:3:265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:97:3:265

Index Entries

Navigation