Skip to main content
Log in

Levels of zinc and lipid peroxidation in acute coronary syndrome

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was carried out on 20 female patients diagnosed with acute coronary syndrome (ACS). The control group was composed of 20 healthy female volunteers. Plasma malondialdehyde (MDA) levels and serum zinc (Zn), total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and VLDL-cholesterol, Lp(a), Apo-A1, and Apo-B were determined in all patients and controls. Plasma MDA levels were determined to be significantly high in patients with ACS compared to the controls (1.75±0.27 vs 0.8±0.43 nmol/mL; p<0.05). On the other hand, Zn levels in patients with ACS were determined to be significantly low compared to the control group (67.9±14.8 vs 101.8±22.4 mg/dL; p<0.05). There was a statistically significant negative correlation between MDA and Zn levels in patients with ACS (r=−0.678, p<0.05). Other lipid parameters were significantly altered in patients with ACS compared to the controls (p<0.05). In conclusion, Zn and lipid peroxidation levels are important in patients with ACS and they must be monitored during diagnosis and treatment of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sans, H. Kesteloot, and D. Kromhout, The bruden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on cardiovascular mortality and morbidity statistics in Europe, Eur. Heart J. 18, 1231–1248 (1997).

    Google Scholar 

  2. M. J. Davies, The role of plaque pathology in coronary trombosis, Clin. Cardiol. 20, 12–17 (1997).

    Article  Google Scholar 

  3. M. J. Davies, A macro and micro view of coronary vascular insult in ischemic heart disease, Criculation 82, 1138–1146 (1990).

    Google Scholar 

  4. G. Cikim, Investigation of new risk factors and dyslipidemies in patients with coronary heart disease, Medical Residency thesis, College of Medicine, Firat University, Elazig, Turkey (2002).

    Google Scholar 

  5. V. Fuster, L. Badimon, J. J. Badimon, et al., The pathogenesis of coronary artery disease and the acute coronary syndromes (1), N. Engl. J. Med. 326, 242–250 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. R. A. Jacob and B. J. Burri, Oxidative damage and defense, Am. J. Clin. Nutr. 63, 985–990 (1996).

    Google Scholar 

  7. J. M. Gutteridge, Lipid peroxidation and antioxidants as biomarkers of tissue damage, Clin. Chem. 41, 1819–1828 (1995).

    PubMed  CAS  Google Scholar 

  8. M. D. Stringer, P. G. Gorog, A. Freeman, et al., Lipid peroxides and atherosclerosis, Br. Med. J. 298, 281–284 (1989).

    CAS  Google Scholar 

  9. A. H. Wyllie, E. Duvall, Cell injury and death. In: JO’D Mcgee, P. G. Isaacson, N. A. Wright. Oxford Textbook of Pathology. New York: Oxford University Press, 141–193 (1992).

    Google Scholar 

  10. S. Meraji, P. M. Abuja, M. Hayn, et al., Relationship between classic risk factors, plasma antioxidants and indicators of oxidant stress in angina pectoris (AP) in Tehran, Atherosclerosis 150, 403–412 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. H. Esterbauer, G. Wag, and H. Puhl, Lipid peroxidation and its role in atherosclerosis, Br. Med. Bull. 49, 566–576 (1993).

    PubMed  CAS  Google Scholar 

  12. B. Hennig, Y. Wang, S. Ramasamy, et al., Zinc deficiency alters barrier function of cultured porcine endothelial cells, J. Nutr. 122, 1242–1247 (1992).

    PubMed  CAS  Google Scholar 

  13. R. J. Maughan, Role of micronutrients in sport and physical activity, Br. Med. Bull. 55, 683–690 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. D. Konig, J. Keul, H. Northoff, et al., Effect of 6-week nutritional intervention with enzymatic yeast cells and antioxidants on exercise stress and antioxidant status, Wien. Med. Wochenschr. 149, 13–18 (1999).

    PubMed  CAS  Google Scholar 

  15. J. Clari, R. Talwalkar, C. J. McClain, et al., Selective removal of zinc from cell culture media, J. Trace Elements Exp Med. 7, 143–151 (1995).

    Google Scholar 

  16. C. Lopez, D. C. Ocon, M. S. Mengo, et al., Study of zinc and copper serum levels in dislipemias, Therapie 46, 17–20 (1991).

    PubMed  CAS  Google Scholar 

  17. O. Oster, Trace element concentrations (Cu, Zn, Fe) in sera from patients with dilated cardiomyopathy, Clin. Chim. Acta. 214, 209–218 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. A. Golik, N. Cohen, Y. Ramot, et al., Type II diabetes mellitus, congestive heart failure, and zinc metabolism, Biol. Trace Element Res. 39, 171–175 (1993).

    CAS  Google Scholar 

  19. T. Magalova, A. Brtkova, A. Bederova, et al., Serum copper and zinc in industrial centers in Slovakia, Biol. Trace Element Res. 40, 225–235 (1994).

    Article  CAS  Google Scholar 

  20. M. Tokdemir, S. A. Polat, Y. Acik, et al., Comparison of blood zinc and copper concentrations in criminal and non criminal schizophrenic patients, Arch. Androl. 49, 365–368.

  21. K. Satoh, Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method, Clin. Chim. Acta. 90, 37–43 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. G. Baydas, M. F. Gursu, S. Yilmaz, et al., Daily rhythm of glutathione peroxidase activity, lipid peroxidation and glutathione levels in tissues of pinealectomized rats, Neurosci. Lett. 323, 195–198 (2002).

    PubMed  CAS  Google Scholar 

  23. J. Loeper, J. Goy, L. Rozensztajn, et al., Lipid peroxidation and protective enzymes during myocardial infarction, Clin. Chim. Acta. 196, 119–125 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. S. R. Maxwell and G. Y. Lip, Free radicals and antioxidants in cardiovascular disease, Br. J. Clin. Pharmacol. 44, 307–317 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. W. Cai, B Devaux, W. Schaper, et al., The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions, Atherosclerosis 131, 177–186 (1997).

    Article  PubMed  CAS  Google Scholar 

  26. E. Gomez, C. del Diego, I. Orden, et al., Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction, J. Trace Elements Med. Biol. 14, 65–70 (2000).

    Article  CAS  Google Scholar 

  27. B. Hennig, M. Toborek, and C. J. Mcclain, Antiatherogenic properties of zinc: implications in endothelial cell metabolism, Nutrition 12, 711–717 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cikim, G., Canatan, H., Gursu, M.F. et al. Levels of zinc and lipid peroxidation in acute coronary syndrome. Biol Trace Elem Res 96, 61–69 (2003). https://doi.org/10.1385/BTER:96:1-3:61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:96:1-3:61

Index Entries

Navigation