Skip to main content
Log in

A model of aluminum exposure associated with lipid peroxidation in rat brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We have developed a rat model to investigate the relationship between aluminum exposure and aluminum accumulation, and with oxidative damage in brain tissues. Intraperitoneal injections of aluminum lactate for 7 wk (the total aluminum dosage per rat was approx 100 mg) significantly increased aluminum levels in the brain. The concentration of lipid peroxidation products (thiobarbituric acid-reactive substances [TBARS]) also increased in the brain following aluminum lactate injections. No significant correlations between the concentrations of aluminum and of TBARS were found in the whole brain. Subcellular analysis revealed that aluminum lactate injections led to a significant increase in the concentration of aluminum in the mitochondrial fraction but had no significant effect on the concentration of peroxides in any subcellular fraction.

These results suggest that aluminum accumulation induced by the aluminum lactate administration associates with the acceleration of lipid peroxidation in rat brain. Furthermore, these data indicate that the pro-oxidant effect of aluminum may be indirect and concentration independent. The experimental conditions used here provide an animal model of aluminum accumulation in the brain that should prove useful for further investigations of the mechanisms of aluminum neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Martyn, D. J. P. Baker, C. Osmond, E. C. Harris, J. A. Edwardson, and R. F. Lace, Geographical relation between Alzheimer’s disease and aluminum in drinking water, Lancet 8629, 59–62 (1989).

    Google Scholar 

  2. A. B. Graves, E. White, T. D. Koepsell, B. V. Reifler, G. V. Belle, and E. B. Larson, The association between aluminum containing products and Alzheimer’s disease, J. Clin. Epidemiol. 43, 35–44 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. D. R. Crapper-McLachlan and U. De Boni, Aluminum in human brain disease—an overview, Neurotoxicology 1, 3–16 (1980).

    Google Scholar 

  4. A. C. Alfrey, G. R. Legendre, and W. D. Kaehney, The dialysis encephalopathy syndrome, N. Engl. J. Med. 294, 184–188 (1976).

    Article  PubMed  CAS  Google Scholar 

  5. M. R. Wills and J. Savory, Water content of aluminum, dialysis, dementia, and osteomalacia, Environ. Health Perspect. 63, 141–147 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. R. A. Yokel, The toxicology of aluminum in the brain: a review, Neurotoxicology 21, 813–828 (2000).

    PubMed  CAS  Google Scholar 

  7. M. Ohtawa, M. Seko, and F. Takayama, Effect of aluminum ingestion on lipid peroxidation, Chem. Pharm. Bull. 31, 1415–1418 (1983).

    PubMed  CAS  Google Scholar 

  8. R. Katyal, B. Desigan, C. P. Sodhi, and S. Ojha, Oral aluminum administration and oxidative injury, Biol. Trace Element Res. 57, 125–130 (1997).

    CAS  Google Scholar 

  9. C. G. Fraga, P. I. Oteiza, M. S. Golub, and M. E. Gershwin, Effect of aluminum on brain lipid peroxidation, Toxicol. Lett. 51, 213–219 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. C. D. Smith, J. M. Carney, P. E. Starke-Reed, et al., Excess brain proten oxidation and enzyme dysfunction in normal aging and in Alzheimer disease, Proc. Natl. Acad. Sci. USA 88, 10,540–10,543 (1991).

    CAS  Google Scholar 

  11. D. T. Dexter, C. J. Carter, and F. R. Wells, Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease, J. Neurochem. 52, 381–389 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. D. R. Rosen, T. Siddique, D. Patterson, et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amytropric lateral sclerosis, Nature 362, 59–62 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. S. V. Verstraeten, M. S. Golub, C. L. Keen, and P. I. Oteiza, Myelin is a preferential target of aluminum-mediated oxidative damage, Arch. Biochem. Biophys. 344, 289–294 (1994).

    Article  Google Scholar 

  14. T. Ohyashiki, T. Karino, S. Suzuki, and K. Matsui, Effect of aluminum ion on Fe2+-induced lipid peroxidation in phospholipid liposomes under acidic conditions, J. Biochem. 120, 895–900 (1996).

    PubMed  CAS  Google Scholar 

  15. M. S. Golub, C. L. Keen, and E. R. Gershwin, Effects of aluminum excess and manganese deficiency on neurobehavioral endpoints in adult mice, Toxicol. Appl. Pharmacol. 112, 154–160 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. P. I. Oteiza, C. L. Keen, B. Han, and M. S. Golub, Aluminum accumulation and neurotoxicity in Swiss-Webster mice after long-term dietary exposure to aluminum and citrate, Metabolism 42, 1296–1300 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. A. E. Shohda, Z. G. Mohamed, T. F. Atef, and A. H. Mohamed, Effect of cadmium and aluminium intake on the antioxidant status and lipid peroxidation in rat tissues, J. Biochem. Mol. Toxicol. 15, 207–214 (2001).

    Article  Google Scholar 

  18. M. S. Golub, S. L. Germann, B. Han, and C. L. Keen, Lifelong feeding of high aluminum diet to mice, Toxicology 150, 107–117 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. G. B. Chainy, A. Sahoo, and C. Swain, Effect of aluminum on lipid peroxidation of cerebral hemisphere of chick, Bull. Environ. Contam. Toxicol. 50, 85–91 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. R. P. Bertholf, J. R. P. Nicholson, M. R. Wills, and J. Savory, Measurement of lipid peroxidation products in rabbit brain and organs (response to aluminum exposure). Ann. Clin. Lab. Sci. 17, 418–423 (1987).

    PubMed  CAS  Google Scholar 

  21. M. F. Van Ginkel, G. B. Van der Voet, M. E. De Broe, and F. A. De Wolff, Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone, J. Lab. Clin. Med. 121, 453–460 (1993).

    PubMed  Google Scholar 

  22. G. H. Hogeboom, in Methods in Enzymology, S. P. Colowick and N. O. Kaplan, eds., Academic, New York, Vol. 1, pp. 16–19 (1955).

    Chapter  Google Scholar 

  23. T. Yonetani, in Methods in Enzymology, R. W. Estabrook and M. E. Pullman, eds., Academic, New York, Vol. 10, pp. 332–335 (1966).

    Google Scholar 

  24. H. W. Strobel and J. D. Dignam, in Methods in Enzymology, S. Fleischer and L. Packer, eds., Academic, New York, Vol. 52, pp. 89–96 (1979).

    Google Scholar 

  25. A. Kornberg and B. L. Horecker, in Methods in Enzymology, S. P. Colowick and N. O. Kaplan, eds., Academic, New York, Vol 1, pp. 323–324 (1955).

    Chapter  Google Scholar 

  26. J. M. Kissane and E. Robins, The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system, J. Biol. Chem. 233, 184–188 (1958).

    PubMed  CAS  Google Scholar 

  27. J. A. Beuge and S. D. Aust, Microsomal lipid peroxidation, in Methods in Enzymology, S. Fleischer and L. Packer, eds., Academic, New York, Vol. 52, pp. 302–310 (1979).

    Google Scholar 

  28. C. P. Lebel and S. C. Bondy, Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes, Neurochem. Int. 17, 435–440 (1999).

    Article  Google Scholar 

  29. R. Cathcart, E. Schwiers, and B. N. Ames, Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay, Anal. Biochem. 134, 111–116 (1983).

    Article  PubMed  CAS  Google Scholar 

  30. E. Kaneko, H. Hoshino, T. Yotsuyanagi, et al., Determination of aluminum in the human serum of a dialysis patient by ion-pair reverse-phase partition high-performance liquid chromatography, Anal. Chem. 63, 2219–2222 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. M. F. Van Ginkel, G. B. Van der Voet, and F. A. De Wolff, Improved method of analysis for aluminum in brain tissue, Clin. Chem. 36, 658–661 (1990).

    PubMed  Google Scholar 

  32. K. V. Subbarao, J. S. Richardson, and L. C. Ang, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem. 55, 342–345 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. D. R. Crapper, S. S. Krishnan, and A. J. Dalton, Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration, Science 180, 511–513 (1973).

    Article  PubMed  CAS  Google Scholar 

  34. D. P. Perl and A. R. Brody, Alzheimer’s disease: X-ray spectrophotometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neuron, Science 208, 297–299 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. X. Xie, and R. A. Yokel, Aluminum facilitation of iron-mediated lipid peroxidation is dependent on substrate, pH, and aluminum and iron concentrations, Arch. Biochem. Biophys. 327, 222–226 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. D. R. Crapper, S. S. Krishnan, and S. Qittkat, Aluminum, neurofibrillary degeneration and Alzheimer’s disease, Brain 99, 67–80 (1976).

    Article  PubMed  CAS  Google Scholar 

  37. P. F. Good, C. W. Olanow, and D. P. Perl, Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study, Brain Res. 593, 343–346 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. Y. Ogasawara, T. Sakamoto, K. Ishii, H. Takahashi, and S. Tanabe, Effect of administration routes and chemical forms of aluminum on the aluminum accumulation in the brain, Biol. Trace Element Res. 85, 269–278 (2002).

    Article  Google Scholar 

  39. J. P. Blass, G. E. Gibson, K. Sheu, and R. S. Black, Mitochondria, aging and neurological disease, in Non Neuronal Cells in Alzheimer’s Disease, P. Zatta and M. Nicoli, eds., World Scientific, Singapore, pp. 95–107 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogasawara, Y., Ohata, E., Sakamoto, T. et al. A model of aluminum exposure associated with lipid peroxidation in rat brain. Biol Trace Elem Res 96, 191–201 (2003). https://doi.org/10.1385/BTER:96:1-3:191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:96:1-3:191

Index Entries

Navigation