Skip to main content
Log in

Concentration of selected elements in the roots and crowns of both primary and permanent teeth with caries disease

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We examined the differences between the concentrations of chemical elements in caries-changed primary teeth and permanent ones with a division into the root and the crown. The study comprised 27 children aged from 4 to 11 yr and 36 adults aged from 36 to 71 yr. We examined the elements with the total reflection X-ray fluorescence method. The lowest concentrations of calcium, manganese, strontium, lead, and copper were in the roots of primary teeth compared to the roots of permanent ones. The calcium, nickel, zinc, lead, and copper concentrations were significantly higher in the roots of primary teeth than in the roots of permanent teeth. However, the zinc concentration was higher both in the root and crown of primary teeth than in permanent teeth. On the basis of our investigations, we can conclude that the content of some elements (manganese, copper, strontium, and lead) is higher in caries permanent teeth than in primary ones. The nickel and zinc concentrations are higher in the teeth of the children than the adults. However, the content of other elements (calcium, chromium, iron) is similar in both kinds of teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Nowak and H. Kozłowski, Heavy metals in hair and teeth: the correlation with metal concentration in the environment, Biol. Trace Element Res. 5, 213–228 (1998).

    Google Scholar 

  2. W. H. Bowen, Exposure to metal ions and susceptibility to dental caries, J. Dent. Educ. 65, 1046–1053 (2001).

    PubMed  CAS  Google Scholar 

  3. K. Bercovitz and D. Laufer, Systematic lead absorption in human tooth roots, Arch. Oral Biol. 37, 350–357 (1990).

    Google Scholar 

  4. K. Bercovitz and D. Laufer, Carious teeth as indicators of lead exposure, Bull. Environ. Contam. Toxicol. 50, 724–729 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. P. Bloch, J. M. Shapiro, L. Soule, et al., Assessment of lead exposure of children from K-XRF measurement of shed teeth, Appl. Radiat. Isot. 49, 703–705 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. S. R. Grobler, F. S. Theunissen, and L. S. Marsky, Evidence of undue lead exposure in Cape Town before the advent of leaded petrol, S. Afr. Med. J. 86, 169–171 (1996).

    PubMed  CAS  Google Scholar 

  7. S. R. Grobler, F. S. Theunissen, and T. J. Kotze, The relation between lead concentrations in human dental tissue and in blood, Arch. Oral Biol. 45, 607–609 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. D. M. Ferguson and L. J. Harwood, The effects of lead levels on the growth of word recognition in middle childhood, Int. J. Epidemiol. 22, 891–897 (1993).

    Article  Google Scholar 

  9. F. Gil, A. Facio, E. Villanueva, et al., The association of tooth lead content with dental health factors, Sci. Total Environ. 192, 183–191 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. F. Gil, M. L. Percz, A. Facio, et al., Dental lead levels in the Galician population, Spain, Sci. Total Environ. 156, 145–150 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. H. M. Tvinnerein, R. Eide, G. Fosse, et al., Lead in primary teeth from Norway—changes in lead levels from 1970s to the 1990s, Sci. Total Environ. 207, 165–177 (1997).

    Article  Google Scholar 

  12. H. M. Tvinnerein, R. Eide, G. Fosse, et al., Trace elements in primary teeth from six areas in Hungary, Int. J. Environ. Stud. 50, 267–275 (1996).

    Article  Google Scholar 

  13. H. M. Tvinnerein, R. Eide, G. Fosse, et al., Zinc in primary teeth from children in Norway, Sci. Total. Environ. 226, 201–212 (1999).

    Article  Google Scholar 

  14. B. Nowak, Occurrence of heavy metals and sodium, potasium and calcium in human teeth, Analyst 120, 747–750 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. M. E. J. Curzon and D. C. Crocker, Relationships of trace elements in human tooth enamel to dental caries, Arch. Oral Biol. 23, 647–653 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. U. Majewska, J. Braziewicz, D. Bana’s, et al., An elemental correlation study in cancerous breast tissue by total reflection X-ray fluorescence, Biol. Trace Element Res. 60, 91–100 (1997).

    CAS  Google Scholar 

  17. U. Majewska, D. Banaś, J. Braziewicz, et al., Total reflection X-ray fluorescence: a new tool for trace elements detection for medical application, Pol. J. Med. Phys. Eng. 1, 35–46 (1995).

    Google Scholar 

  18. U. Majewska, J. Braziewicz, D. Banaś, et al., Some aspects of statistical distribution of trace element concentrations in biomedical samples, Nucl. Instrum. Methods B. 150, 254–259 (1999).

    Article  CAS  Google Scholar 

  19. K. Bercovitz, Tooth type as indicator of exposure to lead of adults and children, Arch. Oral Biol. 35, 895–897 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. D. Tantbirojn, W. H. Douglas, C. C. Ko, et al., Spatial chemical analysis of dental stain using wavelength dispersive spectrometry, Eur. J. Oral Sci. 106, 971–976 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. J. Yoshinaga and T. Suzuki, Sex and age related variation in elementalconcentration of contemporary Japanese ribs, Sci. Total Environ. 79, 209–221 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. G. Fosse and N. Justesen, Lead in deciduous teeth from larger cites of some countries, Int. J. Environ. Stud. 47, 203–210 (1995).

    Article  CAS  Google Scholar 

  23. M. B. Rabinovitz, Relating tooth and blood lead levels in children, Bull. Environ. Contam. Toxicol.. 55, 853–857 (1995).

    Google Scholar 

  24. M. B. Rabinovitz, J. D. Wang, and W. T. Soong, Dentine lead and child intelligence in Taiwan, Arch. Environ. Health 46, 351–360 (1991).

    Article  Google Scholar 

  25. T. Lyngbye, O. N. Hansen, and P. Grandjean, Lead concentration in deciduous teeth from Danisch school children, Dan. Med. Bull. 38, 89–93 (1991).

    PubMed  CAS  Google Scholar 

  26. J. Begerow, I. Freier, M. Turfeld, et al., Internal lead and cadmium exposure in 6-year-old children from western and eastern Germany, Int. Arch. Occup. Environ. Health 66, 243–248 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. R. A. Barrea, C. A. Perez, and A. Y. Ramos, Zinc incorporation in human dental calculus, J. Synchrontr. Radiat. 8, 990–992 (2001).

    Article  CAS  Google Scholar 

  28. R. Z. LeGeros, C. B. Bleiwas, M. Retino, et al., Zinc effect on the in vitro formation of calcium phosphates relevance to clinical inhibition of calculus formation, Am. J. Dent. 12, 65–71 (1999).

    PubMed  CAS  Google Scholar 

  29. A. Anttila and A. Anttila, Determination of lead and some other trace elements in deciduous teeth measured by PIXE, Proc. Finn. Dent. Soc. 83, 277–280 (1987).

    PubMed  CAS  Google Scholar 

  30. R. Z. LeGeros and G. Quirolgico, Trace element: their effect on the crystal growth of apatities, J. Dent. Res. 56, A55 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gierat-Kucharzewska, B., Braziewicz, J., Majewska, U. et al. Concentration of selected elements in the roots and crowns of both primary and permanent teeth with caries disease. Biol Trace Elem Res 96, 159–167 (2003). https://doi.org/10.1385/BTER:96:1-3:159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:96:1-3:159

Index Entries

Navigation