Skip to main content
Log in

Pharmacological levels of copper exert toxic effects in Caco-2 cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper might be toxic to human intestinal cells because of its ability to catalyze the formation of free radicals. The aim of the present study was to quantify toxicological effects of increasing copper concentrations in preconfluent, colonic cancerous cells as well as in postconfluent, differentiating Caco-2 cells. Our results indicate that postconfluent cells might be more sensitive to copper toxicity. A significant rise of lactate dehydrogenase (LDH) release (150 µM or above) and decrease of cell proliferation (100 µM or above) with increasing copper levels was found, as compared to the control. To the contrary, preconfluent cells were not significantly affected by copper (LDH release) or, if so, only at a concentration of 250 µM (proliferation). Loss of viability and morphological changes, including loss of adherence and cell rounding, were visible after incubation with 250 µM copper in both groups. Superoxide dismutase (SOD) activities were not affected by copper. Glutathione peroxidase (GSH-Px) and catalase activities were higher in copper-treated cells, especially in the postconfluent ones (nevertheless, the results were not significant because of high standard deviations). In conclusion, we demonstrated that copper exerts intracellular, toxicological effects on both groups of Caco-2 cells, although the effects seem to be more evident in the postconfluent (enterocytelike) group. Risk assessment, especially for high concentrations, might be of special interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Academy of Science (NAS) Subcommittee on the Tenth Edition of the RDAs, Food and Nutrition Board Commission on Life Sciences, National Research Council, Recommended Dietary Allowances, 10th ed., National Academy Press, Washington, DC (1989).

    Google Scholar 

  2. X. D. Thanh, S. Djebbar-Sid, O. Benali-Baitich, et al., Stability, toxicity and cytotoxicity of a cupric complex towards cultured Caco-2 cells, Anticancer Res. 20, 4639–4642 (2000).

    PubMed  CAS  Google Scholar 

  3. O. I. Aruoma and B. Halliwell, Free Radicals and Food Additives, Taylor & Francis, London (1991).

    Google Scholar 

  4. B. Halliwell and S. Chirico, Lipid peroxidation: its mechanism, measurement, and significance, Am. J. Clin. Nutr. 57, 715S–725S (1993).

    PubMed  CAS  Google Scholar 

  5. J. M. Mates and F. Sanchez-Jimenez, Antioxidant enzymes and their implications in pathophysiologic processes, Front. Biosci. 4, 339–345 (1999).

    Article  Google Scholar 

  6. G. Vendemiale, I. Grattagliano, and E. Altomare, An update on the role of free radicals and antioxidant defense in human disease, Int. J. Clin. Lab. Res. 29, 49–55 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. M. Romeo, N. Bennani, M. Gnassia-Barelli, et al., Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax, Aquat. Toxicol. 48, 185–194 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. N. S. Aston, N. Watt, I. E. Morton, et al., Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 Line), Hum. Exp. Toxicol. 19, 367–376 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. M. B. Grisham, C. von Ritter, B. F. Smith, et al., Interaction between oxygen radicals and gastric mucin, Am. J. Physiol. 253, G93-G96 (1987).

    PubMed  CAS  Google Scholar 

  10. C. F. Babbs, Free radicals and the etiology of colon cancer, Free Radical Biol. Med. 8, 191–200 (1990).

    Article  CAS  Google Scholar 

  11. M. L. Scarino, R. Poverini, G. Di Lullo, et al., Inhibition of protein synthesis after exposure of Caco-2 cells to heavy metals, ATLA 20, 325–333 (1992).

    Google Scholar 

  12. C. Ekmekcioglu, G. Strauss-Blasche, V. J. Leibetseder, et al., Toxicological and biochemical effects of different beverages on human intestinal cells, Food Res. Int. 32, 421–427 (1999).

    Article  Google Scholar 

  13. P. J. Guzzie, Lethality testing, in In Vitro Toxicology, S. C. Gad, ed., Raven, New York, pp. 57–86 (1994).

    Google Scholar 

  14. H. Aebi, Catalase in vitro, Methods Enzymol. 105, 121–126 (1984).

    PubMed  CAS  Google Scholar 

  15. J. M. Gotz, C. I. van Kan, H. W. Verspaget, et al., Gastric mucosal superoxide dismutases in Helicobacter pylori infection, Gut 38(4), 502–506 (1996).

    PubMed  CAS  Google Scholar 

  16. L. Flohe and W. A. Gunzler, Assays of glutathione peroxidase, Methods Enzymol. 105, 114–121 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. T. Noda, R. Iwakiri, K. Fujimoto, et al., Induction of mild intracellular redox imbalance inhibits proliferation of Caco-2 cells, FASEB J. 15(12), 2131–2139 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. E. Cario, S. Jung, J. Harder d’Heureuse, et al., Effects of exogenous zinc supplementation on intestinal epithelial repair in vitro, Eur. J. Clin. Invest. 30, 419–428 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. P. G. Reeves, M. Briske-Anderson, and S. M. Newman, Jr., High zinc concentrations in culture media effect copper uptake and transport in differentiated human colon adenocarcinoma cells, J. Nutr. 126, 1701–1712 (1996).

    PubMed  CAS  Google Scholar 

  20. S. Ferruzza, Y. Sambuy, M. R. Ciriolo, et al., Copper uptake and intracellular distribution in the human intestinal Caco-2 cell line, Biometals 13, 179–185 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. D. J. Howard, R. B. Ota, L. A. Briggs, et al., Oxidative stress induced by environmental tobacco smoke in the workplace is mitigated by antioxidant supplementation, Cancer Epidemiol. Biomarkers Prev. 7, 981–988 (1998).

    Google Scholar 

  22. S. S. Baker and R. D. Baker, Antioxidant enzymes in the differentiated Caco-2 cell line, In Vitro Cell. Dev. Biol. 28A, 643–647 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. F. Y. Leung, Trace elemets that act as antioxidants in parenteral micronutrition, J. Nutr. Biochem. 9, 304–307 (1998).

    Article  CAS  Google Scholar 

  24. R. D. Raffaniello and R. A. Wapnir, Zinc-induced metallothionein synthesis by Caco-2 cells, Biochem. Med. Metab. Biol. 45, 101–107 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. F. Vecchini, E. Pringault, T. R. Billiar, et al., Decreased activity of inducibel nitric oxide synthase type 2 and modulation of the expression of glutathione S-transferase alpha, bcl-2, and metallothioneins during differentiation of CaCo-2 cells, Cell Growth Differ. 8, 261–268 (1997).

    PubMed  CAS  Google Scholar 

  26. Q. Ding, Q. Wang, and B. M. Evers, Alteration of MAPK activities associated with intestinal cell differentiation, Biochem. Biophys. Res. Commun. 284, 282–288 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. R. Gauthier, C. Harnois, J. F. Drolet, et al., Human intestinal epithelial cell survival: differentiation state-specific control mechanisms, Am. J. Physiol. (Cell Physiol.) 280, C1540–C1554 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zödl, B., Zeiner, M., Marktl, W. et al. Pharmacological levels of copper exert toxic effects in Caco-2 cells. Biol Trace Elem Res 96, 143–152 (2003). https://doi.org/10.1385/BTER:96:1-3:143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:96:1-3:143

Index Entries

Navigation