Skip to main content
Log in

Effects of the Ca ionophore A23187 on zinc-induced apoptosis in C6 glioma cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc ions are essential, but at elevated concentrations, they also have toxic effects on mammalian cells. Zinc plays a crucial role in cell proliferation and differentiation and it even protects cells against apoptosis caused by various reagents. On the other hand, zinc at high concentrations causes cell death that was characterized as apoptotic by internucleosomal DNA fragmentation, formation of apoptotic bodies, and breakdown of the mitochondrial membrane potential. In the present work, a clone of rat C6 glioma cells that was resistant to toxic effects of ZnCl2 up to 250 µM was employed to study the effect of the ionophore A23187 on zinc-induced apoptosis. Neither 150 µM Zn2+ nor 100 nM A23187 alone caused apoptosis as measured by internucleosomal DNA fragmentation. However, combined exposure of C6 cells to 100 nM A23187 and 150 µM Zn2+ for 48 h was effective in inducing apoptosis. Because the so-called calcium ionophore A23187 is not specific for Ca2+ ions but also transports Zn2+ with high selectivity over Ca2+, we investigated whether this substance promoted the uptake of Zn2+ ions into C6 cells. Employing the zinc-specific fluorescence probe Zinquin, we observed that the very low concentration of 1.9 nM A23187 significantly and rapidly raised the intracellular mobile Zn2+ content. Analysis by atomic absorption spectroscopy revealed that incubation with 1.9 nM A23187 caused a doubling of the total intracellular zinc level within 60 min. We conclude that the apoptosis evoked by the combined action of Zn2+ and A23187 was the result of enhanced Zn2+ influx evoked by the ionophore, resulting in higher intracellular zinc levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  2. J. M. Berg and Y. Shi, The galvanisation of biology: a growing appreciation for the role of zinc, Science 271, 1081–1085 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. F. Grummt, C. Weinmann-Dorsch, J. Schneider-Schaulis, et al., Zinc as a second messenger of mitogenic induction. Effects on diadenosine tetraphosphate (Ap4A) and DNA synthesis, Exp. Cell Res. 163, 191–200 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. L. Petrie, J. K. Chesters, and M. Franklin, Inhibition of myoblast differentiation by lack of zinc, Biochem. J. 270, 13,585–13,588 (1991).

    Google Scholar 

  5. C. Schmidt and D. Beyersmann, Transient peaks in zinc and metallothionein levels during differentiation of 3T3L1 cells, Arch. Biochem. Biophys. 364, 91–98 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. M. J. McCabe, S. A. Jiang, and S. Orrenius, Chelation of intracellular zinc triggers apoptosis in mature thymocytes, Lab. Invest. 69, 101–110 (1993).

    PubMed  CAS  Google Scholar 

  7. F. W. Sunderman, The influence of zinc on apoptosis, Ann Clin. Lab. Sci. 25, 134–142 (1995).

    PubMed  CAS  Google Scholar 

  8. J. J. Cohen and R. C. Duke, Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132, 38–42 (1984).

    PubMed  CAS  Google Scholar 

  9. K. S. Sellins and J. J. Cohen, Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes, J. Immunol. 139, 3199–3206 (1987).

    PubMed  CAS  Google Scholar 

  10. M. Ishido, S. T. Homma, P. S. Leung, et al., Cadmium-induced DNA fragmentation is inhibitable by zinc in porcine kidney LLC-PK1 cells, Life Sci. 56, PL351–PL356 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. C. J. Frederickson, E. J. Kasarskis, D. Ringo, et al., A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain, J. Neurosci. Methods 20, 91–103 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. P. D. Zalewski, I. J. Forbes, and W. H. Betts, Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II), Biochem. J. 296, 403–408 (1993).

    PubMed  CAS  Google Scholar 

  13. H. Haase, W. Wätjen, and D. Beyersmann, Zinc induces apoptosis that can be supressed by lanthanum in C6 rat glioma cells, Biol. Chem. 382, 1227–1234 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. D. K. Perry, M. J. Smyth, H. R. Stennicke, et al., Zinc is a potent inhibitor of the apoptotic protease caspase-3. A novel target for zinc in the inhibition of apoptosis, J. Biol. Chem. 272, 18,530–18,533 (1997).

    Article  CAS  Google Scholar 

  15. F. Chai, A. Q. Troung-Tran, L. H. Ho, et al., Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc depriviation: a review, Immun. Cell. Biol. 77, 272–278 (1999).

    Article  CAS  Google Scholar 

  16. W. Wätjen, M. Cox, M. Biagioli, et al., Cadmium-induced apoptosis in C6 glioma cells: mediation by caspase 9-activation, BioMetals 15, 15–25 (2002).

    Article  PubMed  Google Scholar 

  17. W. L. Erdahl, C. J. Chapman, E. Wang, et al., Ionophore 4-BrA23187 transports Zn2+ and Mn2+ with high selectivity over Ca2+, Biochemistry 35, 13,817–13,825 (1996).

    Article  CAS  Google Scholar 

  18. P. Benda, J. Lightbody, G. Sato, et al., Differentiated rat glial strain in tissue culture, Science 161, 370–371 (1968).

    Article  PubMed  CAS  Google Scholar 

  19. P. K. Smith, R. I. Krohn, G. T. Hermanson, et al., Measurement of protein using bicinchoninc acid, Anal. Biochem. 150, 76–85 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Clonning, 2nd ed., Cold Spring Habor Laboratory Press, Cold Spring Harbor, NY, Vol. 3, pp. E3-E4 (1989).

    Google Scholar 

  21. W. Wätjen, Cadmium-induzierte Apoptose in Sägerzellen. Einfluß von intrazellulärer Signaltransduktion und oxidativem StreB. GCA-Verlag, Herdecke, Germany (2001).

    Google Scholar 

  22. H. Haase and D. Beyersmann, Intracellular zinc distribution and transport in C6 rat glioma cells, Biochem. Biophys. Res. Commun. 296, 923–928 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. H. Haase and D. Beyersmann, Uptake and intracellular distribution of labile and total Zn(II) in C6 rat glioma cells investigated with fluorescent probes and atomic absorption, Biometals 12(3), 247–254 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. J. B. Smith, S. D. Dwyer, and L. Smith, Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes, J. Biol. Chem. 264, 7115–7118 (1989).

    PubMed  CAS  Google Scholar 

  25. R. A. Colvin, N. Davis, R. W. Nipper, et al., Evidence for a zinc/proton antiporter in rat brain, Neurochem. Int. 36, 539–547 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. J. Y. Koh, S. W. Suh, B. J. Gwang, et al., The role of zinc in selective neuronal death after transient global cerebral ischemia, Science 272, 1013–1016 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. S. W. Suh, K. B. Jensen, M. S. Jensen, et al., Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains, Brain Res. 852, 274–278 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. C. J. Frederickson, M. D. Hernandez, and J. F. McGinty, Translocation of zinc may contribute to seizure-induced death of neurons, Brain Res. 480, 317–321 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, S., Arning, J. & Beyersmann, D. Effects of the Ca ionophore A23187 on zinc-induced apoptosis in C6 glioma cells. Biol Trace Elem Res 96, 133–142 (2003). https://doi.org/10.1385/BTER:96:1-3:133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:96:1-3:133

Index Entries

Navigation