Skip to main content
Log in

Computer simulation of Zn(II) speciation and effect of Gd(III) on Zn(II) speciation in human blood plasma

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(Cys)2H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0×10−4 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Hay, Bio-inorganic Chemistry, Ellis Horwood, Chichester (1984).

    Google Scholar 

  2. P. Bermejoa, E. M. Pena, R. Domingueza, et al., Food Chem. 77, 361–369 (2002).

    Article  Google Scholar 

  3. C. H. Evans, ed., Biochemistry of Lanthanides, Plenum, New York (1990).

    Google Scholar 

  4. J. Z. Ni, ed., Bioinorganic Chemistry of Rare Earth Elements, Science Press, Beijing (1995).

    Google Scholar 

  5. H. Zhang, X. Lu, J. Wang, et al., Biol. Trace Element Res. 92, in press.

  6. J. P. Wang, H. Y. Zhang, C. J. Niu, et. al., Chem. J. Chin. Univ. 24, in press.

  7. H. Y. Zhang, J. P. Wang, X. Lu, et al., J. Grad. School Chin. Acad. Sci. 19 (Suppl. 1), 388–394.

  8. G. E. Jackson and J. G. Toit, S.-Afr. Tydskr. Chem. 45, 82–85 (1992).

    CAS  Google Scholar 

  9. P. M. May, P. W. Linder, and D. R. Williams, Experientia 32, 1492–1494 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. D. R. Williams, Proc. Anal. Div. Chem. Soc. 16, 81–82 (1979).

    CAS  Google Scholar 

  11. P. M. May, P. W. Linder, and D. R. Williams, J. Chem. Soc. Dalton Trans. 588–595 (1977).

  12. G. E. Jackson, S. Wynchank, and M. Woudenber, Magn. Reson. Med. 16, 57–66 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Wang, X. Lu, and C. J. Nui, Chin. Chem. Lett. 12, 161–162 (2001).

    CAS  Google Scholar 

  14. T. D. Luckey, B. Venugopal, and D. Huntcheson, eds., Heavy Metal Toxicity Safety and Hormology, Academic, New York (1975).

    Google Scholar 

  15. X. Lu, Thesis, Changchun Institute of Applied Chemistry, Academia Sinica (2001).

    Google Scholar 

  16. Y. Wang, Thesis, Changchun Institute of Applied Chemistry, Academia Sinica (2000).

    Google Scholar 

  17. J. F. Han, Thesis, Changchun Institute of Applied Chemistry, Academia Sinica (1999).

    Google Scholar 

  18. G. Silló and A. E. Martell, Stability Constants of Metal-ion Complexes, Special Publication No. 25, The Chemical Society, Burlington House, London (1971).

    Google Scholar 

  19. G. Silló and A. E. Martell, Stability Constants of Metal-ion Complexes, Special Publication No. 17, The Chemical Society, Burlington House, London (1964).

    Google Scholar 

  20. E. N. Rizkalla, G. R. Choppin, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner and L. Eyring, eds., North-Holland, Amsterdam, Vol. 15, pp. 430–434 (1994).

    Google Scholar 

  21. J. R. Duffield, D. M. Taylor, and D. R. Williams, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, L. R. Eyring, G. R. Chopping, and G. H. Lander, eds., North-Holland, Amsterdam, Vol. 18, p. 591 (1994).

    Google Scholar 

  22. G. X. Xu, ed., Rare Earths, Metallurgy Industry Press, Beijing, p. 471 (1995).

    Google Scholar 

  23. Y. Wang, X. Lu, H. Y. Zhang, et al., Chem. Res. Chin. Univ. 17, 352–355 (2000).

    Google Scholar 

  24. E. Ohyoshi, Y. Hamada, K. Nakata, et al., J. Inorg. Biochem. 75, 213–218 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. S. Yan, Z. Hong, and X. Li, Practical Elements Medicine, He Nan Medical University Press, Zhengzhou, p. 114 (2000).

    Google Scholar 

  26. L. Meng, L. Ding, H. T. Chen, D. Q. Zhao, and J. Z. Ni, Chem. J. Chin. Univ. 20, 5–8 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhang, H., Yang, K. et al. Computer simulation of Zn(II) speciation and effect of Gd(III) on Zn(II) speciation in human blood plasma. Biol Trace Elem Res 96, 125–131 (2003). https://doi.org/10.1385/BTER:96:1-3:125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:96:1-3:125

Index Entries

Navigation