Skip to main content
Log in

Iodine and/or selenium deficiency alters tissue distribution pattern of other trace elements in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Tissue distribution of Fe, Mn, Cu, and Zn, the essential trace elements associated with oxidant and/or antioxidant processes, was examined in iodine- and/or selenium-deficient rats (ID, SeD, ISeD). Fe and Mn were the most affected minerals in all types of deficiency states. Mn levels decreased significantly in the liver in all deficiency states (approx 20–30%), in the heart in ID and SeD rats (approx 30–35%) and in the testis in ID rats (approx 15%). Whereas Mn enhancement was noted in kidney (approx 45%) and plasma in SeD and ISeD (approx 20% and 50%, respectively) animals. However, most striking alterations were seen with Fe. Significant elevation of Fe concentrations were observed in all deficiency states in the kidney (approx 90–125%) and heart (approx 20–25%), and in the liver in SeD (approx 35%) and ISeD (approx 75%) rats, whereas significant (approx 20%) Fe enhancement in the testis was observed only in ISeD animals. Lower Cu (approx 10–15%) and higher Zn (approx 10–20%) concentrations in heart tissues in all deficiency states were found; higher Zn (approx 20–35%) in the kidney of SeD and ISeD rats, and lower Cu in the testis of SeD animals were observed. In brain tissue, no alteration was seen in Fe, Mn, and Zn content, however, significantly increased (approx 15–20%) Cu concentrations were noted in all deficiency states. The results of this study indicated that iodine and/or selenium deficiency may modify the distribution and the homeostasis of other minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Aggett, Physiology and metabolism of essential trace elements: an outline, Clin. Endocrinol. Metab. 14, 513–543 (1985).

    Article  PubMed  CAS  Google Scholar 

  2. H. Vanucchi, Interaction of vitamins and minerals, Arch. Latinoam. Nutr. 41, 9–18 (1991).

    Google Scholar 

  3. Y. H. Lee, D. K. Layman, R. R. Bell, and H. W. Norton, Response of glutathione peroxidase and catalase to excess dietary iron in rats. J. Nutr. 111, 2195–2202 (1981).

    PubMed  CAS  Google Scholar 

  4. A. G. Abdel Rahim, J. R. Arthur, and C. F. Mills, Effects of dieatary copper, cadmium, iron, molybdenum and manganese on selenium utilization by the rat, J. Nutr. 116, 403–411 (1986).

    PubMed  CAS  Google Scholar 

  5. P. M. Moriarty, M. F. Picciano, J. L. Beard, and C. C. Reddy, Classical selenium-dependent glutathione peroxidase expression is decreased secondary to iron deficiency in rats, J. Nutr. 125, 293–301 (1995).

    PubMed  CAS  Google Scholar 

  6. M. J. Christensen, C. A. Olsen, D. V. Hansen, and B. C. Ballif, Selenium regulates expression in rat liver of genes for proteins involved in iron metabolism, Biol. Trace Element Res. 74, 55–70 (2000).

    Article  CAS  Google Scholar 

  7. R. E. Burch, R. V. Williams, H. K. Hahn, M. M. Jetton and J. F. Sullivan, Tissue trace element and enzyme content in pigs fed a low manganese diet. I. A relationship between manganese and selenium, Lab. Clin. Med. 86, 132–139 (1975).

    CAS  Google Scholar 

  8. Z. Zhu, M. Kimura, and Y. Itokawa, Mineral status in selenium-deficient rats compared to selenium-sufficient rats fed vitamin-free casein-based or torula yeast-based diet, Biol. Trace Element Res. 37, 219–231 (1993).

    CAS  Google Scholar 

  9. K. Matsumoto, T. Inagaki, R. Hirunuma, S. Enomoto, and K. Endo, Contents and uptake rates of Mn, Fe, Co, Zn, and Se in Se-deficient rat liver cell fractions, Anal. Sci. 17, 587–591 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. T. M. Al-Khayat, T. M., Al-Darweesh, and M. S. Islam, The effect of thyroxine, the antithyroid drug propylthiouracil and thyroidectomy on mineral metabolism in rat tissues, J. Clin. Chem. Clin. Biochem. 20, 281–285 (1982).

    PubMed  CAS  Google Scholar 

  11. J. W. Oliver, Effect of thyroid state on magnesium concentration of rat tissues, Am. J. Vet. Res. 39, 159–161 (1978).

    PubMed  CAS  Google Scholar 

  12. K. O. Adeniyi, O. O. Ogunkeye, and C. O. Isichei, Thyroidectomy and thyroxine administration alter serum calcium levels in rat, Acta Physiol. Hung. 81, 95–99 (1993).

    PubMed  CAS  Google Scholar 

  13. D. Behne, A. Kyriakopoulos, H. Meinhold, and J. Kohrle, Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme, Biochem. Biophys. Res. Commun. 173, 1143–1149 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. W. Croteau, S. I. Whittemore, M. Schneider, and D. L. St Germain, Clonning and expression of cDNA for a mammalian type III Iodothyronine deiodinase, J. Biol. Chem. 270, 16569–16575 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. M. J. Berry, L. Banu, and P. R. Larsen, Type I iodothyronine deiodinase is a selenocystein-containing enzyme, Nature 349, 438–440 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. J. R. Arthur and G. J. Beckett, Thyroid function, Br. Med. Bull. 55, 658–668 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. World Health Organization, Trace Elements in Human Nutrition and Health, WHO, Geneva (1996).

    Google Scholar 

  18. V. Ducros and A. Favier, Gas chromatographic-mass spectrometric method for the determination of selenium in biological samples, J. Chromatogr. 583, 35–44 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. G. J. Beckett, F. Nicol, P. W. H. Rae, S. Beech, Y. Guo, and J. R. Arthur, Effects of combined iodine and selenium deficiency on thyroid hormone metabolism in rats, Am. J. Clin. Nutr. 57, 240S-243S (1993).

    PubMed  CAS  Google Scholar 

  20. N. Chareonpong-Kawamoto and K. Yasumoto, Selenium deficiency as a cause of overload of iron and unbalanced distribution of other minerals, Biosci. Biotechnol. Biochem. 59, 302–306 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. N. Chareonpong-Kawamoto, T. Higasa, and K. Yasumoto, Histological study of iron deposits in selenium-deficient rats, Biosci. Biotechnol. Biochem. 59, 1913–1920 (1995).

    PubMed  CAS  Google Scholar 

  22. D. A. Papanastasiou, D. V. Vayenas, A. Vassilopoulos, and M. Repanti, Concentration of iron and distribution of iron and transferrin after experimental iron overload in rat tissues in vivo: study of the liver, the spleen, the central nervous system and other organs, Pathol. Res. Pract. 196, 47–54 (2000).

    PubMed  CAS  Google Scholar 

  23. P. T. Lieu, M. Heiskala, P. A. Peterson, and Y. Yang, The roles of iron in health and disease, Mol. Aspects Med. 22, 1–87 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. X. Qu, K. Huang, L. Deng, and H. Xu, Selenium deficiency-induced alterations in the vascular system of the rat, Biol. Trace Element Res. 75, 119–128 (2000).

    Article  CAS  Google Scholar 

  25. S. S. Sobajic, M. B. Mihailovic, and M. O. Miric, The effects of selenium deficiency, dietary selenium, and vitamin E supplementation on the oxidative status of pig liver, J. Environ. Pathol. Toxicol. Oncol. 17, 265–270 (1998).

    PubMed  CAS  Google Scholar 

  26. S. Yetkin, F. Hincal, N. Basaran, and G. Ciliv. Serum selenium status in children with iron deficiency anemia, Acta Haematol. 88, 185–188 (1992).

    Google Scholar 

  27. K. Eder, A. Kralik, and M. Kirchgessner, The effect of manganese supply on thyroid hormone metabolism in the offspring of manganese-depleted dams, Biol. Trace Element Res. 55, 137–145 (1996).

    Article  CAS  Google Scholar 

  28. N. Q. Liu, Q. Xu, X. L. Hou, et al., The distribution patterns of trace elements in the brain and erythrocytes in a rat experimental model of iodine deficiency, Brain Res. Bull. 55, 309–312 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. K. Aihara, Y. Nishi, S. Hatano, et al., Zinc, copper, manganese, and selenium metabolism in thyroid disease, Am. J. Clin. Nutr. 40, 26–35 (1984).

    PubMed  CAS  Google Scholar 

  30. A. C. Chua and E. H. Morgan, Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat, Biol. Trace Element Res. 55, 39–54 (1996)

    CAS  Google Scholar 

  31. E. A. Malecki, A. G. Devenyi, T. F. Barron, T. J. Mosher, P. Eslinger and C. V. Flaherty-Craig, Iron and manganese homeostasis in chronic liver disease: relationship to pallidal T1-weighted magnetic resonance signal hyperintensity, Neurotoxicology 20, 647–652 (1999).

    PubMed  CAS  Google Scholar 

  32. D. V. Vayenas, M. Repanti, A. Vassilopoulos, and D. A. Papanastasiou. Influence of iron overload on manganese, zinc and copper concentration in rat tissues in vivo: study of liver, spleen and brain, Int. J. Clin. Lab. Res. 28, 183–186 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. M. Aschner and J. L. Aschner, Manganese transport across the blood-brain barrier: relationship to iron homeostasis, Brain Res. Bull. 24, 857–860 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon, Oxford (1989).

    Google Scholar 

  35. T. Miyamoto, A. Sakurai, and L. J. DeGroot, Effects of zinc and other divalent metals on deoxyribonucleic acid binding and hormone-binding activity of human alpha 1 thyroid hormone receptor expressed in Escherichia coli, Endocrinology 129, 3027–3033 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. A. Kralik, K. Eder, and M. Kirchgessner, Influence of zinc and selenium deficiency on parameters relating to thyroid hormone metabolism, Horm. Metab. Res. 28, 223–226 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. H. C. Lukaski, C. B. Hall, and M. J. Marchello. Impaired thyroid hormone status and thermoregulation during cold exposure of zinc-deficient rats, Horm. Metab. Res. 24, 363–366 (1992).

    PubMed  CAS  Google Scholar 

  38. M. Ruz, J. Codoceo, J. Galgani, et al., Single and multiple selenium-zinc-iodine deficiencies affect rat thyroid metabolism and ultrastructure, J. Nutr. 129, 174–180 (1999).

    PubMed  CAS  Google Scholar 

  39. K. L. Olin, R. M. Walter, and C. L. Keen, Copper deficiency affects selenoglutathione peroxidase and selenodeiodinase activities and antioxidant defense in weanling rats, Am. J. Clin. Nutr. 59, 654–658 (1994).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giray, B., Riondel, J., Arnaud, J. et al. Iodine and/or selenium deficiency alters tissue distribution pattern of other trace elements in rats. Biol Trace Elem Res 95, 247–258 (2003). https://doi.org/10.1385/BTER:95:3:247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:95:3:247

Index Entries

Navigation