Skip to main content
Log in

Comparison of serum copper, zinc, calcium, and magnesium levels in preeclamptic and healthy pregnant women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Deficient or excessive levels of blood trace elements can be an adverse factor in human and animal pregnancy. The aim of this study was to investigate possible differences in the levels of serum magnesium, calcium, copper, and zinc in preeclamptic and healthy pregnant women. Samples were collected from 30 preeclamptic (PE) and 30 healthy pregnant (HP) women. The serum copper concentration was significantly lower in the PE group by 68% (p<0.0001) when compared to the healthy controls. The serum zinc and calcium were 43% and 10% lower in the PE women, respectively (both with p<0.0001), whereas the magnesium concentration showed nonsignificant differences between the two groups. Measurement of these elements may be useful for the early diagnosis of a preeclamptic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Jenkins, B. B. Head, and J. C. Hauth, Severe preeclampsia at <25 weeks of gestation: maternal and neonatal outcomes, Am. J. Obstet. Gynecol. 186, 790–795 (2002).

    Article  PubMed  Google Scholar 

  2. K. Mahomed, M. A. Williams, G. B. Woelk, et al., Leukocyte selenium, zinc, and copper concentrations in preeclamptic and normotensive pregnant women, Biol. Trace Element Res. 75, 107–118 (2000).

    Article  CAS  Google Scholar 

  3. R. K. Vyas, A. P. Gupta, A. Gupta, and A. K. Aeron, Serum copper, zinc, magnesium and calcium levels in various human diseases, Indian J. Med. Res. 76, 301–304 (1982).

    PubMed  CAS  Google Scholar 

  4. P. Borella, A. Szilagyi, G. Than, I. Csaba, A. Giardino, and F. Facchinetti, Maternal plasma concentrations of magnesium, calcium, zinc and copper in normal and pathological pregnancies. Sci. Total Environ. 99, 67–76 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. B. Adam, E. Malatyalioglu, M. Alvur, and C. Talu, Magnesium, zinc and iron levels in pre-eclampsia J. Matern. Fetal Med. 10, 246–250 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. F. Zhao, Ca, Mg, Cu and Zn contents of the maternal and umbilical cord serum in pregnancy-induced hypertension, Zhonghua Fu Chan Ke Za Zhi 24, 212–214 (1989).

    PubMed  CAS  Google Scholar 

  7. P. Kiilholma, R. Paul, P. Pakarinen, and M. Gronroos, Copper and zinc in pre-eclampsia. Acta Obstet. Gynecol. Scand. 63, 629–631 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. J. Apgar, Zinc and reproduction, Annu. Rev. Nutr. 5, 43–68 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. F. F Cherry, E. A. Bennett, G. S. Bazzano, L. K. Johnson, G. J. Fosmire, and H. K Batson, Plasma zinc in hypertension/toxemia and other reproductive variables in adolescent pregnancy, Am. J. Clin. Nutr. 34, 2367–2375 (1981).

    PubMed  CAS  Google Scholar 

  10. K. Prema, Predictive value of serum copper and zinc in normal and abnormal pregnancy, Indian J. Med. Res. 71, 554–560 (1980).

    PubMed  CAS  Google Scholar 

  11. G. Ajayi, Concentration of calcium, magnesium, copper and iron during normal and EPH-gestosis pregnancy, Trace Element Med. 10, 151–152 (1993).

    Google Scholar 

  12. N. O. Malas and Z. M. Shurideh, Does serum calcium in pre-eclampsia and normal pregnancy differ? Saudi Med. J. 22, 868–871 (2001).

    PubMed  CAS  Google Scholar 

  13. J. R Steinert, A. W. Wyatt, L. Poston, R. Jacob, and G. E. Mann, Preeclampsia is associated with altered Ca2+ regulation and NO production in human fetal venous endothelial cells, FASEB J. 16, 721–738 (2002).

    PubMed  CAS  Google Scholar 

  14. K. Kisters, W, Niedner, I. Fafera, and W. Zidek, Plasma and intracellular Mg2+ concentrations in pre-eclampsia, J. Hypertens. 8, 303–306 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. L. A. Villanueva, A. Figueroa, and S. Villanueva, Blood concentrations of calcium and magnesium in women with severe pre-eclampsia, Ginecol. Obstet. Mex. 69, 277–281 (2001).

    PubMed  CAS  Google Scholar 

  16. R. Sanders, A. Konijnenberg, H. J. Huijgen, H. Wolf, K. Boer, and G. T. Sanders, Intracellular and extracellular, ionized and total magnesium in pre-eclampsia and uncomplicated pregnancy, Clin. Chem. Lab. Med. 37, 55–59 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. A. Neri, B. Eckerling, and C. Bahary, The copper and copper oxidase content of maternal and infant umbilical arterial and venous blood serum at delivery, Gynaecologia 168, 40–48 (1969).

    PubMed  CAS  Google Scholar 

  18. J. A. O’Leary, G. S. Novalis, and G. J. Vosburgh, Maternal serum copper concentrations in normal and abnormal gestations, Obstet. Gynecol. 28, 112–117 (1966).

    PubMed  CAS  Google Scholar 

  19. S. Friedman, C. Bahary, B. Eckerling, and B. Gans, Serum copper level as an index of placental function, Obstet. Gynecol. 33, 189–194 (1969).

    PubMed  CAS  Google Scholar 

  20. S. Kharb, Lipid peroxidation in pregnancy with pre-eclampsia and diabetes, Gynecol. Obstet. Invest. 50, 113–116 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. C. A. Kumar and U. N. Das, Lipid peroxides, anti-oxidants and nitric oxide in patients with pre-eclampsia and essential hypertension, Med. Sci. Monit. 6, 901–907 (2000).

    PubMed  CAS  Google Scholar 

  22. Y. Wang and S. W. Walsh, Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia, Placenta 22, 206–212 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. G. Bayhan, Y. Atamer, A. Atamer, B. Yokus, and Y. Baylan, Significance of changes in lipid peroxides and antioxidant enzyme activities in pregnant women with preeclampsia and eclampsia, Clin. Exp. Obstet. Gynecol. 27, 142–146 (2000).

    PubMed  CAS  Google Scholar 

  24. J. R. Prohaska and B. Brokate, Lower copper, zinc-superoxide dismutase protein but not mRNA in organs of copper-deficient rats, Arch. Biochem. Biophys. 393, 170–176 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. O. H. Gurer, H. Ozgunes, and M. S. Beksac, Correlation between plasma malondialdehyde and ceruloplasmin activity values in preeclamptic pregnancies, Clin. Biochem. 34, 505–506 (2001).

    Article  Google Scholar 

  26. A.F.F. Adeniyi, The implication of hypozincemia in pregnancy, Acta Obstet. Gynecol. Scand. 66, 579–581 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. J. C. Chisolm and C. R. Handorf, Zinc, cadmium, metallothionein, and progesterone: do they participate in the etiology of pregnancy induced hypertension? Med. Hypotheses 17, 231–242 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. E. Diaz, A. Halhali, C. Luna, L. Diaz, E. Avila, and F. Larrea, Newborn birth weight correlates with placental zinc, umbilical insulin-like growth factor I, and leptin levels in preeclampsia, Arch. Med. Res. 33, 40–47 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. A. Flynn, W. J. Pories, W. H. Strain, O. A. Hill, Jr., and R. B. Fratianne, Rapid serum-zinc depletion associated with corticosteroid therapy, Lancet 27, 1169–1172 (1971).

    Article  Google Scholar 

  30. M. N. Soltan and O. M. Jenkins, Maternal and fetal zinc concentration and fetal abnormality, Br. J. Obstet. Gynaecol. 89, 56 (1982).

    PubMed  CAS  Google Scholar 

  31. B. A. Bassiouni, A. I. Foda, and A. A. Rafei, Maternal and fetal plasma zinc in preeclampsia, Eur. J. Obstet. Gynecol. Reprod. Biol. 9, 75–80 (1979).

    Article  PubMed  CAS  Google Scholar 

  32. M. I. Yousef, H. A. El Hendy, F. M. El-Demerdash, and E. I Elagamy, Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats, Toxicology 175, 223–234 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. H. Cunzhi, J. Jiexian, Z. Xianwen, G. Jingang, and H. Suling, Classification and prognostic value of serum copper/zinc ratio in Hodgkin’s disease, Biol. Trace Element Res. 83, 133–138 (2001).

    Article  CAS  Google Scholar 

  34. I. Yucel, F. Arpaci, A. Ozet, et al., Serum copper and zinc levels and copper/zinc ratio in patients with breast cancer, Biol. Trace Element Res. 40, 31–38 (1994).

    Article  CAS  Google Scholar 

  35. A. Ajose, B. Fasubaa, J. I. Anetor, D. A. Adelekan, and N. O. Makinde, Serum zinc and copper concentrations in Nigerian women with normal pregnancy, Niger. Postgrad. Med. J. 8, 161–164 (2001).

    PubMed  CAS  Google Scholar 

  36. P. A. Taufield, K. L. Ales, L. M. Resnick, M. L. Druzin, J. M. Gertner, and J. H. Laragh, Hypocalciuria in preeclampsia, N. Engl. J. Med. 19, 715–718 (1987).

    Article  Google Scholar 

  37. J. M Belizan, J. Villar, Z. Zalazar, L. Rojas, D. Chan, and G. Bryce, Preliminary evidence of the effect of calcium supplementation on blood pressure in normal pregnant women, Am. J. Obstet. Gynecol. 146, 175–180 (1983).

    PubMed  CAS  Google Scholar 

  38. J. Villar and J. M. Belizan, Same nutrient, different hypotheses: disparities in trials of calcium supplementation during pregnancy, Am. J. Clin. Nutr. 71(5 Suppl.), 1375–1379 (2000).

    Google Scholar 

  39. S. M. Handwerker, B. T. Altura, and B. M Altura, Serum ionized magnesium and other electrolytes in the antenatal period of human pregnancy, J. Am. Coll. Nutr. 15, 36–43 (1996).

    Google Scholar 

  40. O. O. Makinde, F. Amole, and S. O. Ogunniyi, Serum copper, zinc and magnesium in maternal and cord blood at delivery, West Afr. J. Med. 10, 168–170 (1991).

    PubMed  CAS  Google Scholar 

  41. C. A. Standley, J.E. Whitty, B. A. Mason, and D. B. Cotton, Serum ionized magnesium levels in normal and preeclamptic gestation, Obstet. Gynecol. 89, 24 (1997).

    Article  PubMed  CAS  Google Scholar 

  42. Q. Qi, W. Li, and Z. Wang, Magnesium and calcium concentration of peripheral serum and mononuclear cells in patients with pregnancy induced hypertension, Zhonghua Fu Chan Ke Za Zhi 32, 15–18 (1997).

    PubMed  CAS  Google Scholar 

  43. K. Kisters, J. Korner, F. Louwen, et al., Plasma and membrane Ca2+ and Mg2+ concentrations in normal pregnancy and in preeclampsia, Gynecol. Obstet. Invest. 46, 158–163 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumru, S., Aydin, S., Simsek, M. et al. Comparison of serum copper, zinc, calcium, and magnesium levels in preeclamptic and healthy pregnant women. Biol Trace Elem Res 94, 105–112 (2003). https://doi.org/10.1385/BTER:94:2:105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:94:2:105

Index Entries

Navigation