Skip to main content
Log in

Effects of inflammation and anti-inflammatory treatment on serum trace elements concentrations

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We investigated the serum concentrations of zinc and copper during the inflammatory process together with the effect of treatment with a nonsteroid anti-inflammatory agent on these trace elements concentrations. In the present study, we used 92 guinea pigs, 12 of which constituted the control group; the remaining 80 were the experimental group. To start with, proquazone (as anti-inflammatory agent) was administered orally to 40 guinea pigs of the experimental group at 20-mg/kg doses 2 h before the surgery. Throughout the experimental period, the above dose was administered to the animals twice a day. We produced inflammation in all animals of the experimental group by using carrageenan (inflammatory agent) dropped into mandibular surgical defects. Serum concentrations of zinc and copper were determined by atomic absorption spectrophotometry in both groups at the 6th, 48th, 120th, 168th, and 240th h. The serum zinc concentrations of the carrageenan-administered group decreased significantly (p<0.01). When comparing the serum zinc concentrations of the carrageenan plus proquazone-administered group with those of control group, the decrease (p<0.05) at the 6th, 48th, and 120th h were statistically significant. When the copper serum concentrations of the carrageenan-administered group were compared with those of the control group, at the 48th, 120th, and 168th h, a statistically significant increase (p<0.01) was observed. However, there was no significant change in the carrageenan plus proquazone-administered group at the 168th and 240th h. As a result during the acute phase of inflammation, serum zinc concentrations decreased, whereas serum copper concentrations increased. The alterations in zinc concentrations were more rapid than those in copper concentrations, but the administration of proquazone slowed the rate of decrease in serum zinc concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Contran, V. Kumar, and S. L. Robbins, Inflammation and repair, (chapter 7), in Robbins Pathologic Basis of Disease, 4th ed., WB Saunders, Philadelphia, pp. 39–86 (1989).

    Google Scholar 

  2. N. S. Rote, Inflammation: Alteration in immunity and inflammation (chapter 8), in: Pathophysiology The Biologic Basis for Disease in Adult and Children, 2nd ed., K. L. McCance and S. E. Huether, eds., Mosby, Baltimore, MD, pp. 234–298 (1994).

    Google Scholar 

  3. R. G. Topozian and M. H. Goldberg, Infection and host, in Management of Infections of the Oral and Maxillofacial Regions, WB Saundes, Philadelphia, pp. 1–38 (1981).

    Google Scholar 

  4. V. J. Pories, J. H. Henzel, C. G. Williams, et al., Acceleration of healing with zinc sulphate, Ann. Surg. 165, 432–436 (1967).

    Article  PubMed  CAS  Google Scholar 

  5. M. W. Greaves and A. W. Skillen, Effect of long continued ingestion of zinc sulphate in patients with venous leg ulceration, Lancet 2 (7679), 889–891 (1970).

    Article  PubMed  CAS  Google Scholar 

  6. W. R. Beisel, Trace elements in infectious processes, Med. Clin. North. Am. 60(4), 831–850 (1976).

    PubMed  CAS  Google Scholar 

  7. A. M. Kahn and H. E. Gordon, Alterations of zinc metabolism following surgical operations, Surg. Gynecol. Obstet. 128, 88–90 (1969).

    PubMed  CAS  Google Scholar 

  8. A. Rahmat, J. N. Norman, and G. Smith, The effect of zinc deficiency on wound healing, Br. J. Surg. 61, 271–273 (1974).

    Article  PubMed  CAS  Google Scholar 

  9. I. Tengrup and H. Samuelson, Changes in serum zinc during and after surgical procedures, Acta Chir. Scand. 143, 195–199 (1977).

    PubMed  CAS  Google Scholar 

  10. R. S. Pekarek, R. W. Wannemacher, and W. R. Beirsel, The effect of leukocytic endogenous mediator (LEM) on the tissue distribution of zinc and iron, Proc. Soc. Exp. Biol. Med. 140, 685–688 (1972).

    PubMed  CAS  Google Scholar 

  11. E. Funseth, U. Lindh, G. Friman, et al., Relation between trace element levels in plasma and myocardium during coxsackievirus B3 myocarditis in the mouse, Biometals 13(4), 361–367 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. F. Rosner and P. C. Gorfien, Erythrocyte and plasma zinc and magnesium levels in health and disease, J. Lab. Clin. Med. 72(2), 213–219 (1968).

    PubMed  CAS  Google Scholar 

  13. Perkin-Elmer, Analysis of serum determination of copper and zinc, in Analytical Method for Atomic Absorption Spectrophotometry, Perkin-Elmer Corp., Norwalk, CT, p. BC-5 (1973).

  14. M. M. Parker, F. L. Humoller, and D. J. Mahler, Determination of copper and zinc in biological materials, Surg. Forum 13, 40–48 (1967).

    CAS  Google Scholar 

  15. T. Hallbook and H. Hedelin, Zinc metabolism on surgical trauma, Br. J. Surg. 64, 271–274 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. R. Hallgren, M. Feltelius, and U. Lindh, Redistribution of minerals and trace elements in chronic inflammation: a study on isolated blood cells from patients with ankylosing spondylitis, J. Rheumatol. 14(3), 548–553 (1987).

    PubMed  CAS  Google Scholar 

  17. A. Shenkin, Trace elements and inflammatory response: implications for nutritional support, Nutrition 11(1 Suppl.), 100–105 (1995).

    PubMed  CAS  Google Scholar 

  18. I. Kushner, Regulation of acute phase response by cytokines, Perspect. Biol. Med. 36(4), 611–622 (1993).

    PubMed  CAS  Google Scholar 

  19. R. Milanino, M. Marrella, U. Moretti, et al., Copper and zinc status in rats with acute inflammation: focus on the inflamed area, Agent Actions 24(3–4), 356–364 (1988).

    Article  CAS  Google Scholar 

  20. G. Velo, L. Franco, A. Conforti, et al., Ceruloplasmin and copper in inflammation, Eur. J. Rheum. Inflamm. 5(4), 382–385 (1982).

    CAS  Google Scholar 

  21. C. L. Braunschweig, M. Sowers, D. S. Kovacevich, et al., Parenteral zinc supplementation in adult humans during the acute phase response increases the febrile response, J. Nutr. 127(1), 70–74 (1997).

    PubMed  CAS  Google Scholar 

  22. J. Yatsuyanagy, I. Kazuhika, and O. Taketa, Suppressive effect of zinc of same functions of neutrophils: studies with carrageenan induced inflammation in rats, Chem. Pharm. Bull. 35(2), 699–704 (1987).

    Google Scholar 

  23. M. C. McGahan, Copper and aspirin treatment increase the antioxidant activity of plasma, Agent Actions 1(1–2), 59–64 (1990)

    Article  Google Scholar 

  24. M. Gorecki, Y. Beck, J. R. Hartman, et al., Recombinant human superoxide dismutases: production and potantial therapeutical uses, Free Radical Res. Commun. 1(12–13), 401–410 (1991).

    Article  Google Scholar 

  25. R. Miesel, H. J. Hartmann, and U. Weser, Antiinflammatory reactivity of copper (1) thionen, Inflammation 14(5), 471–483 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. U. Skaleric C. M. Manthey, S. E. Mergenhagen, et al., Superoxide release and superoxide dismutase expression by human gingival fibroblasts, Eur. J. Oral Sci. 108(2), 130–135 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. M. Corominas, Mechanisms implicated in adverse to non-steroidal anti-inflammatory drugs, Clin. Exp. Allergy 28(4 Suppl.), 41–45 (1998).

    PubMed  CAS  Google Scholar 

  28. J. R. Vane, Introduction mechanism of action of NSAID, Br. J. Rheumatol. 35, 1–3 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. R. S. Spangler, Cyclooxygenase 1 and 2 in rheumatic disease: implications for NSAID drug therapy, Semin. Arthritis Rheum. 26(1), 435–446 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. R. M. Jimenez-Hernandez, D. Frechilla, B. Lasheras, et al., Inhibition of inflammation and gastric damage in rats by copper (II) complexes, Arzneimittelforschung 45(3), 277–281 (1995).

    PubMed  CAS  Google Scholar 

  31. V. Brumas, B. Brumas, and G. G. Berthon, Copper (II) interaction with nonsteroidal antiinflammatory agents (salicylic acid and acetylsalicylic acid), J. Inorg. Biochem. 57(3), 191–207 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. G. Berthon, Is copper pro- or anti-inflammatory? A reconciling view and a novel approach for the use of copper in the control of inflammation, Agents Actions 39(3–4), 210–217 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. M. Roch-Arveiller, D. P. Huy, L. Maman, et al., Nonsterodial anti-inflammatory drug-copper complex modulation of polymorphonuclear leukocyte migration, Biochem. Pharmacol. 39(3), 569–574 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. H. Miche, V. Brumas, and G. Berthon, Copper (II) interactions with nonsteroidal anti-inflammatory agents. II. Anthranilic acid as a potential OH-inactivating ligand, J. Inorg. Biochem. 68(1), 27–38 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. D. Quviy, J. Neve, J. Fontaine, et al., Trace element status and inflammation parameters during chronic indomethacin treatment in adjuvant arthritic rats, Biol. Trace Element Res. 47(1–3), 209–218 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akçil, E., Yavuz, G. & Koçak, M. Effects of inflammation and anti-inflammatory treatment on serum trace elements concentrations. Biol Trace Elem Res 93, 95–103 (2003). https://doi.org/10.1385/BTER:93:1-3:95

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:93:1-3:95

Index Entries

Navigation