Skip to main content
Log in

Zinc supplementation has no effect on lipoprotein metabolism, hemostasis, and putative indices of copper status in healthy men

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Pharmacological doses of zinc can adversely affect body copper status. The resulting copper deficiency can impact directly upon cholesterol metabolism and a suboptimal copper status has been observed to influence markers of hemostasis (specifically fibrinogen and the copper-containing coagulation factors V and VIII). The aim of this investigation was to examine the effect of a low level of zinc supplementation, to include dietary intake, at the United States tolerable upper intake level of 40 mg/d upon indicators of lipid metabolism, hemostasis, and copper. Thirty-eight subjects were recruited onto a double-blind placebo-controlled intervention trial and randomly selected to one of two groups. Group 1 took zinc supplements (30 mg/d) for 14 wk followed by copper supplements (3 mg/d) for 8 wk (to counteract adverse effects, if any, of zinc supplementation). A second group took placebo supplements for the full duration of the trial. Estimated dietary zinc intake approximated 10 mg/d. The effect of supplement was analyzed by repeated-measures analysis of variance (anova). Results indicate that no effect of zinc supplementation on putative indices of copper status, lipoprotein metabolism, and markers of hemostasis. These results indicate that short-term low-level zinc supplementation (total intake 40 mg/d) is not detrimental to health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Prasad, G. J. Brewer, E. R. Schoomaker, et al., Hypocupraemia induced by zinc therapy in adults, J. Am. Med. Assoc. 240, 2166–2168 (1978).

    Article  CAS  Google Scholar 

  2. K. G. Porter, D. McMaster, M. E. Elmes, et al., Anaemia and low serum copper during zinc therapy, Lancet 2, 774 (1977).

    Article  PubMed  CAS  Google Scholar 

  3. H. N. Hoffman II, R. L. Phyliky, and C. R. Fleming, Zinc-induced copper deficiency, Gastroenterology 94, 508–512 (1988).

    PubMed  Google Scholar 

  4. W. K. Patterson, B. A. Winkelmann, and Perry MC, Zinc-induced copper deficiency: megamineral sideroblastic anemia, Ann. Intern. Med. 103, 385–386 (1985).

    PubMed  CAS  Google Scholar 

  5. L. M. Klevay, Elements of ischemic heart disease, Perspect. Biol. Med. 20, 186–192 (1977).

    PubMed  CAS  Google Scholar 

  6. D. M. Mederios, Hypertension in the Wistar-Kyoto rat as a result of post-weaning copper restriction, Nutr. Res. 7, 231–235 (1987).

    Article  Google Scholar 

  7. S. Reiser, A. Powel, C. Y. Yang, et al., Effect of copper intake on blood cholesterol and its lipoprotein distribution in men, Nutr. Rep. Int. 36, 641–649 (1987).

    CAS  Google Scholar 

  8. L. M. Klevay, W. K. Cranfield, S. K. Gallagher, et al., Decreased glucose tolerance in 2 men during experimental copper depletion, Nutr. Rep. Int. 33, 371–382 (1986).

    CAS  Google Scholar 

  9. M. R. Black, D. M. Medeiros, E. Brunett, et al., Zinc supplements and serum lipids in young adult white males, Am. J. Clin. Nutr. 47, 970–975 (1988).

    PubMed  CAS  Google Scholar 

  10. P. L. Hooper, L. Visconti, P. J. Garry, et al., Zinc lowers high density lipoprotein-cholesterol levels, J. Am. Med. Assoc. 224, 1960–1961 (1980).

    Article  Google Scholar 

  11. J. C. Godfrey, B. Conant-Sloane, D. S. Smith, et al., Zinc gluconate and the common cold: a controlled clinical trial, J. Intern. Med. Res. 20, 234–246 (1992).

    CAS  Google Scholar 

  12. S. B. Mossad, M. L. Macknin, S. V. Medendorp, et al., Zinc gluconate lozenges for treating the common cold in children: a randomised, double-blinded, placebo-controlled trial, Ann. Intern. Med. 125, 81–88 (1996).

    PubMed  CAS  Google Scholar 

  13. J. Duchateau, G. Delepesse, R. Vrijens, et al., Beneficial effects of oral zinc supplementation on the immune response of old people, Am. J. Med. 70, 1001–1004 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. Institute of Medicine, Food and Nutrition Board, Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc, National Academy Press. Washington DC (2001).

    Google Scholar 

  15. H. H. Sandstead and S. Smith Jr, Deliberations and evaluations of approaches, end-points and paradigms for determining zinc dietary recommendations, J. Nutr. 126, 2410s–2418s (1996).

    PubMed  CAS  Google Scholar 

  16. H. H. Sandstead, Requirements and toxicity of essential trace elements illustrated by zinc and copper, Am. J. Clin. Nutr. 61, 621s–624s (1995).

    PubMed  CAS  Google Scholar 

  17. D. B. Milne, C. D. Davis, and F. H. Nielsen, Low dietary zinc alters indices of copper function and status in post-menopausal women, Am. J. Clin. Nutr. 17, 701–708 (2001).

    CAS  Google Scholar 

  18. S. Samman and D. C. K. Roberts, The effect of zinc supplements on lipoproteins and copper status, Atherosclerosis 70, 247–252 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. J. H. Freeland-Graves, B. J. Friedman, W. H. Han, et al., Effect of zinc supplementation on plasma high-density lipoprotein cholesterol and zinc, Am. J. Clin. Nutr. 35, 988–992 (1982).

    PubMed  CAS  Google Scholar 

  20. S. M. Lynch and L. M. Klevay, Effects of dietary Cu deficiency on plasma coagulation factor activities in male and female mice, J. Nutr. Biochem. 3, 387–391 (1992).

    Article  CAS  Google Scholar 

  21. J. J. Mann, C. M. Lawler, G. A. Vehar, et al., Coagulation factor V contains Cu ion, J. Biol. Chem. 259, 12,949–12,951 (1984).

    CAS  Google Scholar 

  22. N. Bihoreau, S. Pin, A. de Kersabiec, et al., Cu-atom identification in active site and inactive forms of plasma-derived factor VIII and recombinant factor VIII-II, Eur. J. Biochem. 220, 41–48 (1994).

    Article  Google Scholar 

  23. W. R. Church, R. L. Jernigan, J. Toole, et al., Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins, Proc. Natl. Acad. Sci. USA 81, 6934–6937 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. S. M. Lynch and L. M. Klevay, Effect of dietary Cu deficiency on plasma fibrinolytic activity in male and female mice, Nutr. Res. 13, 913–922 (1993).

    Article  CAS  Google Scholar 

  25. H. Crawley, Food Portion Sizes, 3rd ed., Her Majesty’s Stationary Office, London (1992).

    Google Scholar 

  26. R. J. Henry, N. Chiamori, J. L. Jacobs, et al., Determination of ceruloplasmin oxidase in serum, Proc. Soc. Exp. Biol. Med. 104, 620–624 (1960).

    CAS  Google Scholar 

  27. J. Calvin and C. P. Price CP, Measurement of alpha 1 antichymotrypsin by immunoturbidity, Ann. Clin. Biochem. 23, 296–299 (1986).

    Google Scholar 

  28. D. G. Jones and N. F. Suttle, Some effects of copper deficiency on leukocyte function in cattle and sheep, Res. Vet. Sci. 31, 151–156 (1981).

    PubMed  CAS  Google Scholar 

  29. Department of Health, Dietary Reference Values for Food Energy and Nutrients for the United Kingdom, Her Majesty’s Stationary Office, London (1991).

    Google Scholar 

  30. L. M. Gatto and S. Samman, The effect of zinc supplementation on plasma lipids and low-density lipoprotein oxidation in males, Free Radical Biol. Med. 19, 517–521 (1995).

    Article  CAS  Google Scholar 

  31. P. R. Gordon and B. L. O’Dell, Short-term zinc deficiency and hemostasis in the rat, Proc. Soc. Exp. Biol. Med. 163, 240–244 (1980).

    PubMed  CAS  Google Scholar 

  32. P. R. Gordon and B. L. O’Dell, Zinc deficiency and impaired platelet aggregation in guinea pigs, J. Nutr. 113, 239–245 (1983).

    PubMed  CAS  Google Scholar 

  33. P. R. Gordon, C. W. Woodruff, H. L. Anderson, et al., Effect of acute zinc deprivation on plasma zinc and platelet aggregation in adult males, Am. J. Clin. Nutr. 35, 113–118 (1982).

    PubMed  CAS  Google Scholar 

  34. G. Marx and A. Eldor, The procoagulant effect of zinc on fibrin clot formation, Am. J. Hematol. 19, 151–159 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. D. R. Van Campen and P. V. Scaife, Zinc interference with copper absorption in rats, J. Nutr. 91, 473–476 (1967).

    PubMed  Google Scholar 

  36. L. M. Klevay, Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested, Am. J. Clin. Nutr. 26, 1060–1068 (1973).

    PubMed  CAS  Google Scholar 

  37. L. M. Klevay, W. G. Pond, and D. M. Medeiros, Decreased high density lipoprotein cholesterol and apoprotein A-I in plasma and ultrastructural pathology in cardiac muscle of young pigs fed a diet high in zinc, Nutr. Res. 8, 1227–1239 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonham, M., O’Connor, J.M., McAnena, L.B. et al. Zinc supplementation has no effect on lipoprotein metabolism, hemostasis, and putative indices of copper status in healthy men. Biol Trace Elem Res 93, 75–86 (2003). https://doi.org/10.1385/BTER:93:1-3:75

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:93:1-3:75

Index Entries

Navigation