Skip to main content
Log in

Developmental aluminum toxicity in mice can be modulated by low concentrations of minerals (Fe, Zn, P, Ca, Mg) in the diet

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Female Swiss Webster mice were fed diets containing 7 (control) or 1000 µg Al/g diet from conception to weaning. Pregnancy weight gain, brith weight, litter size, postnatal mortality, and weaning weight were measured. In different groups, diets low in Fe, Zn, P, or Ca and Mg (CaMg) were used as basal diets, to which Al was added. Relative to controls, who received NRC recommended levels of these nutrients, all diets with marginal essential trace elements impacted development, as demonstrated by effects on birth weight (CaMg, Fe) or weaning weight (Fe, Zn, P). Compared to diets low in Al, the 1000-mg Al/g diet led to reduced weaning weight regardless of the essential element content of the diet. Other end points were influenced by Al only within the basaldiet group; pregnancy weight gain with the low-P diet, litter size with the low-Fe diet, pregnancy completion with the low-Zn diet, and postnatal mortality with the low-CaMg or low-Zn diet. Thus, diets marginal in selected minerals can differentially alter the toxicological profile of developmental Al exposures. A basal diet was also used in which the NRC diet was supplemented with ascorbic acid, which promotes Al absorption. No modification of Al toxicity was seen with ascorbic acid supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chmielnicka and B. Sowa, Cadmium interaction with essential metals (Zn, Cu, Fe), metabolism metallothionein, and ceruloplasmin in pregnant rats and fetuses, Ecotoxicol. Environ. Safety 35, 277–281 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. R. Goyer, Nutrition and metal toxicity, Am. J. Clin. Nutr. 61, 646S–650S (1995).

    PubMed  CAS  Google Scholar 

  3. M. Peraza, F. Ayala-Fierro, D. Barber, et al., Effects of micronutrients on metal toxicity, Environ. Health Perspect. 106, 203–216 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. H. Petering, Some observations on the interaction of zinc, copper, and iron metabnolism in lead and cadmium toxicity, Environ. Health Perspect. 25, 141–145 (1978).

    Article  PubMed  CAS  Google Scholar 

  5. J. Spears and E. Hatfield, Interaction between nickel and copper in the rat, Biol. Trace Element Res. 7, 181–193 (1985).

    Article  CAS  Google Scholar 

  6. M. S. Golub and J. L. Domingo, What we know and what we need to know about developmental aluminum toxicity, J. Toxicol. Environ. Health 48, 585–597 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. J. L. Domingo, Reproductive and developmental toxicity of aluminum: a review, Neurotoxicol. Teratol. 17, 515–521 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. R. B. Martin, J. Savory, S. Brown, et al., Transferrin binding of Al3+ and Fe3+ Clin. Chem. 33, 405–407 (1987).

    PubMed  CAS  Google Scholar 

  9. M. Fernandez Menendez, G. Fell, et al., Aluminum uptake by intestinal cells: effect of iron status and precomplexation, Nephrol. Dial. Transplant. 6, 672–674 (1991).

    Google Scholar 

  10. G. Fosmire and G. Becker, Genetics and iron deficiency influence aluminum accumulation in tissues of mice, FASEB J. 9, A975 (1995).

    Google Scholar 

  11. S. J. McGregor, M. L. Naves, R. Oria, et al., Effect of aluminium on iron uptake and transferrin-receptor expression by human erythroleukaemia K562 cells, Biochem. J. 272, 377–382 (1990).

    PubMed  CAS  Google Scholar 

  12. S. J. McGregor, M. J. Fernandez Menendez, M. L. Naves, et al., The uptake of aluminum and its effect on iron metabolism in the osteoblast like cell line MG-63, Trace Element Electrolytes 11, 187–191 (1994).

    CAS  Google Scholar 

  13. G. Van der Voet and F. De Wolff, The effects of diet and trivalent iron on the intestinal absorption of aluminum in rats, Toxicol. Appl. Pharmacol. 90, 190–197 (1987).

    Article  PubMed  Google Scholar 

  14. M. S. Golub, B. Han, and C. L. Keen, Aluminum alters iron and manganese uptake and regulation of surface transferrin receptors in primary rat oligodendrocyte cultures, Brain Res. 719, 72–77 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. M. S. Golub, B. Han, and C. L. Keen, Aluminum uptake and effects on transferrin mediated iron uptake in primary cultures of rat neurons, astrocytes and oligodendrocytes., NeuroToxicology 20, 961–970 (1999).

    PubMed  CAS  Google Scholar 

  16. J. Greger and M. Baier, Excretion and retention of low or moderate levels of aluminum by human subjects, Food Chem. Toxicol. 21, 473–477 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. E. K. Pivnick, N. C. Kerr, R. A. Kaufman, et al., Rickets secondary to phosphate delpetion. A sequela of antacid use in infancy, Clin. Pediatr. 34, 73–78 (1995).

    CAS  Google Scholar 

  18. M. Yasui, Y. Yase, K. Ota, et al., Evaluation of magnesium, calcium and aluminum metabolism in rats and monkeys maintained on calcium-deficient diets, NeuroToxicology 12, 603–614 (1991).

    PubMed  CAS  Google Scholar 

  19. J. L. Domingo, M. Gomez, D. J. Sanchez, et al., Effect of various dietary constituents on gastrointestinal absorption of aluminum from drinking water and diet, Res. Commun. Chem. Pathol. Pharmacol. 79, 377–380 (1993).

    PubMed  CAS  Google Scholar 

  20. M. Golub and S. Germann, Long term consequences of developmental exposure to aluminum in a suboptimal diet for growth and behavior of Swiss Webster mice, Neurotoxicol. Teratol. 23, 365–372 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. J. L. Domingo, J. M. Llobet, M. Gomez, et al., Nutritional and toxicological effects of short-term ingestion of aluminum by the rat, Res. Commun. Chem. Pathol. Pharmacol. 56, 409–419 (1987).

    PubMed  CAS  Google Scholar 

  22. D. Gawlick, P. Bratter, P. Gardiner, et al., Aluminum in the maintenance diet of rats, in Trace Element Analytical Chemistry in Medicine and Biology, P. Bratter and P. Schramel, eds., Walter de Gruyter, New York, 1987.

    Google Scholar 

  23. M. S. Golub, Behavioral studies in animals: past and potential contribution to the understanding of the relationship between aluminium and Alzheimer’s disease, in Aluminium and Alzheimer’s Disease, C. Exley, ed., Elsevier, Amsterdam, pp. 169–188 (2001).

    Google Scholar 

  24. J. Liu and K. Stemmer, Interaction of aluminum with zinc and copper and its effects on pituitary-testicular axis: a histological study, Biomed. Environ. Sci. 3, 1–10 (1990a).

    PubMed  CAS  Google Scholar 

  25. J. Liu and K. Stemmer, Interaction between aluminum and zinc or copper and its effects on the pituitary-testicular axis. II. Testicular enzyme and serum gonadotropin, Biomed. Environ. Sci. 3, 11–19 (1990).

    PubMed  CAS  Google Scholar 

  26. M. S. Golub, B. Han, and C. L. Keen, Iron and manganese uptake up offspring of lactating mice fed a high aluminum diet, Toxicology 109, 111–118 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. M. S. Golub, B. Han, C. L. Keen, et al., Effects of dietary aluminum excess and manganese deficiency on neurobehavioral endpoints in adult mice, Toxicol. Appl. Pharmacol. 112, 154–160 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. L. Allen, Pregnancy and iron deficiency: unresolved issues, Nutr. Rev. 55, 91–101 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. A. B. Sedman, N. L. Miller, B. A. Warady, et al., Aluminum loading in children with chronic renal failure, Kidney Int. 26, 201–204 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. A. Sedman, G. Klein, R. Merritt, et al., Evidence of aluminum loading in infants receiving intravenous therapy, N. Engl. J. Med. 312, 1337–1343 (1985).

    Article  PubMed  CAS  Google Scholar 

  31. M. J. Baxter, J. A. Burrell, H. Crews, et al., Aluminium levels in milk and infant formulae, Food Addit. Contam. 8, 653–660 (1991).

    PubMed  CAS  Google Scholar 

  32. M. Freundlich, C. Abitbol, C. Zilleruelo, et al., Infant formula as a cause of aluminum toxicity in neonatal uraemia, Lancet 2, 527–529 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. N. M. Hawkins, S. Coffey, M. S. Lawson, et al., Potential aluminium toxicity in infants fed special infant formula, J. Pediatr. Gastroenterol. Nutr. 19, 377–381 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. I. B. Salusky, J. W. Coburn, P. Nelson, et al., Prospective evaluation of aluminum loading from formula in infants with uremia, J. Pediatr. 116, 726–729 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golub, M.S., Germann, S.L. & Keen, C.L. Developmental aluminum toxicity in mice can be modulated by low concentrations of minerals (Fe, Zn, P, Ca, Mg) in the diet. Biol Trace Elem Res 93, 213–225 (2003). https://doi.org/10.1385/BTER:93:1-3:213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:93:1-3:213

Index Entries

Navigation