Skip to main content
Log in

Sodium selenate partially corrects impaired functional responses in detrusor muscle in streptozotocin-induced diabetic rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium selenate was administered to streptozotocin-induced diabetic rats to assess its effects on the detrusor muscle. Thirty-two rats were divided into four groups of eight subjects each. The study animals were made diabetic by means of a single intravenous injection of streptozotocin (STZ). The responsiveness of the detrusor was improved in the group injected with sodium selenate. Diabetes caused significant increases in carbachol and β,γ-MeATP-evoked contractions and significant decrease of contractions induced by electrical stimulation. Isoprenaline-induced relaxation of the detrusor muscle was diminished by diabetes, whereas ATP relaxation appeared to be increased. Although adenosine-induced relaxations in controls and in diabetic rats were accompanied by unchanged responses in normoxic conditions, a significant enhancement in the detrusor muscle was observed during hypoxia. This enhancement of adenosine responsiveness in hypoxic conditions is inhibited in diabetes. Treatment with sodium selenate prevented alterations of both carbachol-induced contractility and isoprenaline-evoked relaxation, whereas nerve-mediated contractions and purinergic responses were not improved in diabetic rats after treatment. Our data suggest that changes in cholinergic and adrenergic responses were the result of selenium deficiency in diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Learmonth, A contribution to the neurophysiology of the urinary bladder in man, Brain 57, 147 (1931).

    Article  Google Scholar 

  2. J. A. Gosling, J. S. Dixon, and R. G. Lendond, The autonomic innervation of the human male and female bladder neck and proximal urethra, J. Urol. 118, 302–305 (1977).

    PubMed  CAS  Google Scholar 

  3. A. Braverman, J. Legos, W. Young, et al., M2 receptors in genito-urinary smooth muscle pathology, Life Sci. 64, 429–436 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. G. T. Somogyi and W. C. de Groat, Function, signal transduction mechanisms and plasticity of presynaptic muscarinic receptors in the urinary bladder, Life Sci. 64, 411–418 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. G. Burnstock, B. Dumsday, and A. Smythe, Atropin resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide, Br. J. Pharmacol. 44, 451–461 (1972).

    PubMed  CAS  Google Scholar 

  6. F. G. Carpenter, Atropin resiatance and muscrainic receptors in the rat urinary bladder, Br. J. Pharmacol. 59, 43–49 (1977).

    PubMed  CAS  Google Scholar 

  7. G. Burnstock, T. Cocks, R. Crowe, et al., Purinergic innervation of the guine pig urinary bladder, Br. J. Pharmacol. 63, 125–138, (1978).

    PubMed  CAS  Google Scholar 

  8. M. B. Bhat, S. K. Mishra, and V. Raviprakash, Sources of calcium for ATP-induced contractions in rat urinary bladder smooth muscle, Eur. J. Pharmacol. 164, 163–166 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. J. Nicholls, S.M.O. Hourani., and I. Kitchen, Charactreization of P1-purinoceptors on rat duodenum and urinary bladder, Br. J. Pharmacol. 105, 639–642 (1992).

    PubMed  CAS  Google Scholar 

  10. C. Frimodt-Moller, Diabetic cystopathy: epidemiology and related disorders, Ann. Int. Med. 92, 318–321 (1980).

    PubMed  CAS  Google Scholar 

  11. K. Kitami, Vesicourethral dysfunction of diabetic patients, Nippon Hinyokika Gakkai Zasshi 82, 1074–1083 (1991).

    PubMed  CAS  Google Scholar 

  12. S. A. Kaplan, A. E. Te, and J. G. Blaivas, Urodynamic findings in patients with diabetic cystopathy, J. Urol. 153, 342–344 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. I. Faerman, L. Glocer, D. Celelner, et al., Autonomic nervous system and diabetes. Histological and histochemical study of the autonomic nerve fibers of the urinary bladder in diabetic pateients, Diabetes 22, 225–237 (1973).

    PubMed  CAS  Google Scholar 

  14. J. Latifpour, A. Gousse, S. Kondo, et al., Effects of experimental diabetes on biochemical and functional characteristics of bladder muscarinic receptors, J. Pharmacol. Exp. Ther. 248, 81–88 (1989).

    PubMed  CAS  Google Scholar 

  15. G. N. Luheshi and M. A. Zar, The effect of streptozotocin induced diabetes on cholinergic motor transmission in rat urinary bladder, Br. J. Pharmacol. 103, 1657–1662 (1991).

    PubMed  CAS  Google Scholar 

  16. F. H., Mumtaz, K. M. Naseem, C. S. Thompson, et al., Alterations in the increases nitric oxide sysnthase binding sites and nonadreneegic, noncholinergic mediated smooth musclerelaxation in the diabetic + rabbit bladder outlet: possible relevance to the pathogenesis of diabetic cystopathy, J. Urol. 162, 558–566 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. J. T. Rotruck, A. L. Pope, H. E. Ganther, et al., Selenium. Biochemical role as a component of glutathione peroxidase. Science 179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  18. O. Ezaki, The insulin-like effect of selenate in rat adipocytes, J. Biol. Chem. 265, 1124–1125 (1990).

    PubMed  CAS  Google Scholar 

  19. J. H. McNeill, H.L.M. Delgatty, and M. L. Battell, Insulin like effects of sodium selenate in streptozotocin-induced diabetic rats, Diabetes 40, 1675–1678 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. L. Lalondel, Y.K.D. Jean, A. Roberts, et al., Fluorometry of selenium in serum or urine, Clin. Chem. Acta 28, 172–174 (1982).

    Google Scholar 

  21. B. Uvelius, Detrusor smooth muscle in rats alloxan induced diabetes, J. Urol. 136, 949–952 (1986).

    PubMed  CAS  Google Scholar 

  22. P. A. Longhurst and J. A. Belis, Abnormalities of rat bladder contractility in streptozotocin induced diabetes mellitus, J. Pharmacol. Exp. Ther. 238, 773–777 (1986).

    PubMed  CAS  Google Scholar 

  23. H. E. Moss, J. Lincoln, and G. Burnstock, A study of bladder dysfunction during streptozotocin induced diabetes in the rate using an in vitro whole bladder preparation, J. Urol. 138, 1279–1284 (1987).

    PubMed  CAS  Google Scholar 

  24. P. O. Andersson, A. Malmgren, and B. Uvelius, Cystometrical and in vitro evaluation of urinary bladder function in rats with streptozotocin induced diabetes, J. Urol. 139, 1359–1362 (1988).

    PubMed  CAS  Google Scholar 

  25. D. J. Becker, B. Reul, A. T. Ozcelikay, et al., Oral selenate improves glucose hemeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats, Diabetologia 39, 3–11 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. J. Lincoln, A. J. Haven, M. Sawyer, et al., The smooth muscle of rat bladder in the early stages of streptozotocin induced diabetes, Br. J. Urol. 56, 24–27 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. S. Gür and S. T. Karahan, Effects of adenosine 5’-triphosphate, adenosine and acetylcholine in urinary bladder and colon muscles from streptozotocin diabetic rats, Arzneim. Forsch. 47, 1226–1229 (1997).

    Google Scholar 

  28. Y. Chen, B. Gustafsson, and H. J. Arnqvist, IGF-binding protein-2 is induced during development of urinary bladder hypertrophy in the diabetic rats, Am. J. Physiol. 272(2 Pt. 1), E297–E303 (1997).

    PubMed  CAS  Google Scholar 

  29. J. A. Belis, R. M. Curley, V. N. Murty, et al., Calcium channel agonist/antagonist effects on cholinergic stimulation of the diabetic rat bladder, Pharmacology 44, 81–91 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. K. Kamata, K. Inoue, and Y. Kasuya, Changes in muscarinic responsiveness, muscarinic receptor density and Ca2+ mobilization of the urinary bladder in streptozotocin-induced diabetic rats, Res. Commun. Chem. Pathol. Pharmacol. 75, 143–158 (1992).

    PubMed  CAS  Google Scholar 

  31. T. L. Tammela, J. A. Briscoe, R. M. Levin, et al., Factors underlying the increased sensitivity to field stimulation of urinary bladder strips from streptozotocin induced diabetic rats, Br. J. Pharmacol. 113, 195–203 (1994).

    PubMed  CAS  Google Scholar 

  32. L. Nilvebrant, J. Ekstrom, and L. Malmberg, Muscarinic receptor density coupled phosphatidyl inositol hydrolysis in diabetic bladder, Mol. Cell. Biochem. 152, 71–76 (1995).

    Google Scholar 

  33. H. Mimata, M. A. Wheeler, Y. Fukumoto, et al., Enhancement of muscarinic receptor coupled phosphatidyl inoitol hydrolysis in diabetic bladder, Mol. Cell. Biochem. 152, 71–76 (1995).

    PubMed  CAS  Google Scholar 

  34. B. Brune, B. Diewald, and V. Ullrich, Ebselen affects calcium homeostatasis in human platelets, Biochem Pharmacol. 41, 1805–1811 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. B. Turan, M. Desilets, L. N. Açan, et al., Oxidative effects of selenite on rat ventricular contractility and Ca movements, Cardiovasc. Res. 32, 351–361 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. W. G. Dail, A. P. Evan, Jr., G. C. Gerritson, et al., Abnormalities in pelvic visceral nerves, a basis for neurogenic bladder in diabetic Chinese hamster, Invest. Urol. 15, 161–166 (1977).

    PubMed  CAS  Google Scholar 

  37. J. V. Waring and I. R. Wendt, Effects of streptozotocin induced diabetes mellitus on intracellular calcium and contraction of longitudinal smooth muscle from rat urinary bladder, J. Urol. 163, 323–330 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. B. Nehru and R. Dua, The effect of dietary selenium on lead neurotoxicity, J. Environ. Pathol. Toxicol. Oncol. 16, 47–50 (1997).

    PubMed  CAS  Google Scholar 

  39. R. R. Bell, M.R.I. Soliman, V. K. Nonavinakere, et al., Guinea pig pulmonary mechanics: altered sensitivity to carbachol by cadmium and/or selenium, Lung 176, 15–24 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. W. Turner and A. Brading, Smooth muscle of the bladder in the normal and diseased state: pathophysiology diagnosis and treatment, Pharmacol. Ther. 75, 77–110 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. D. D. Munro and I. R. Wendt, Contractile and metabolic properties of longitidunal smooth muscle from rat urinary bladder and the effects of aging, J. Urol. 150, 529–536 (1993).

    PubMed  CAS  Google Scholar 

  42. C. Göçmen, A. Seçilmis, E. K. Kumcu, et al., Effects of vitamin E and sodium selenate on neurogenic and endothelial relaxation of corpus cavernosum in the diabetic mice, Eur. J. Pharmacol. 398, 93–98 (2000).

    Article  PubMed  Google Scholar 

  43. T. Fujimura, K. Tamura, T. Tsutsumi, et al., Expression and possible functional role of the beta3-adrenoceptor in human and rat detrusor muscle, Biosci. Rep. 15, 65–97 (1999).

    Google Scholar 

  44. P. A. Longhurst and M. Levendusky, Pharmacological charaterization of beta adrenoceptors mediating relaxation of the rat urinary bladder in vitro, Br. J. Pharmacol. 127, 1744–1750 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. E. M. Kudlacz, A. L. Chun, K. A. Skau, et al., Diabetes and diuretic induced alterations in function of rat urinary bladder, Diabetes 37, 949–955 1988.

    Article  PubMed  CAS  Google Scholar 

  46. S. S. Hedge, A. Choppin, D. Bonhaus, et al., Functional role of M2 and M3 muscrainic receptors in the urinary bladder of rats in vitro and in vivo, Br. J. Pharmacol. 120, 1409–1418 (1997).

    Article  Google Scholar 

  47. L. Noronha-Blob, V. C. Lowe, A. Patton, et al., Muscarinic receptors: relationship among phophoinositide breakdown, adenylate cyclase inhibition, in vitro, detrusor muscle contractions and in vivo cystomtrogram studies in guinea pig bladder, J. Pharmacol. Exp. Ther. 249, 843–851 (1989).

    PubMed  CAS  Google Scholar 

  48. M. A. Wheeler, M. Pontari, T. Nishiomoto, et al., Changes in lipid composition and isoproterenol-and ethanol-stimulated adenylate cyclase activity in aging Fischer rat bladders, J. Pharmacol. Exp. Ther. 254, 277–283 (1990).

    PubMed  CAS  Google Scholar 

  49. B. Turan, O. Hotomaroğlu, M. Kılıç, et al., Cardiac dysfunction induced by low and high diet antioxidant levels comparing seleniumselenium and vitamin E in rats, Regul. Toxicol. Pharmacol. 29, 142–150 (1999).

    Article  PubMed  CAS  Google Scholar 

  50. T. Morita, M. Ando, K. Kihara, et al., Species differences in cAMP production and contractile responses induced by B-adrenoceptor subtypes in urinary bladder smooth muscle, Neurol. Urodynam. 12, 185–190 (1993).

    Article  CAS  Google Scholar 

  51. G. Burnstock, D. G. Satchell, and A. Smythe, A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from diffrenet vertebrate species, Br. J. Pharmacol. 46, 236–242 (1972).

    Google Scholar 

  52. S. Husted, C. Sjörgren, and K. E. Anderson, Direct effects of adenosine and adenine nucleotides on isolated human urinary bladder and their influence on electrically induced contractions, J. Urol. 130, 392–398 (1983).

    PubMed  CAS  Google Scholar 

  53. C. Sjögren, K. E. Anderson, and S. Husted, Atropine resistance of transmurally stimulated isolated human bladder muscle, J. Urol. 128, 1368–1371 (1982).

    PubMed  Google Scholar 

  54. J. M. Marshall, Adenosine and muscle vasodilation in acute ischemic hypoxia, Acta Physiol. Scand. 168, 561–573 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. N. Nakhostine, R. Nadeau, and D. Lamotagne, Altered hypoxia-induced coronary vasodilatation in diabetic rabbit heart, Can. J. Physiol. Pharmacol. 75, 1267–1272 (1997).

    Article  PubMed  CAS  Google Scholar 

  56. S. E. Downing, J. C. Lee, and J. C. Werner, Coronary vascular responses to hypoxia in the diabetic lamb independence from adenosine and autonomic mechanisms, Am. J. Physiol. 112, 272–279 (1986).

    CAS  Google Scholar 

  57. S.K.S. Sarada, M. Sairam, P. Dipti, et al., Role of selenium in redducing hypoxia-induced oxidative stress: an in vivo study, Biomed. Pharmacother. 56, 173–178 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gür, S., Cinel, I. Sodium selenate partially corrects impaired functional responses in detrusor muscle in streptozotocin-induced diabetic rats. Biol Trace Elem Res 93, 171–187 (2003). https://doi.org/10.1385/BTER:93:1-3:171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:93:1-3:171

Index Entries

Navigation