Skip to main content
Log in

Dietary selenium levels determine epidermal langerhans cell numbers in mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is a dietary trace element that is essential for effective immunity and protection from oxidative damage induced by ultraviolet radiation (UVR). Langerhans cells (LC) represent the major antigen-presenting cells resident in the epidermis; a proportion migrate from the skin to the draining lymph nodes in response to UVR. Because it is known that Se deficiency impairs immune function, we determined what effect this has on LC numbers. CH3/HeN mice were weaned at 3 wk and placed on diets containing <0.005 ppm of Se (Se deficient) or 0.1 ppm of Se (Se adequate, control mice). After 5 wk on the diet, the epidermal LC numbers in the Se-adequate group were 966±51 cells/mm2 and LC counts in the epidermis of the Se-deficient mice were 49% lower (p<0.05). Glutathione peroxidase-I (GPx) activity was measured in the epidermis, lymph nodes, and liver. In the epidermis, the activity of GPx in the Se-deficient mice was only 39% (p<0.01) of that seen in epidermis from Se-adequate mice (1.732 U/mg protein). The mice were then irradiated with one dose of 1440 J/m2 of broadband UVB or mock irradiated. After 24 h, the decrease in LC number after UVB was greater in the Se-adequate mice, (40% decrease) compared to the Se-deficient group (10%). Thus, Se deficiency reduces epidermal LC numbers, an effect that might compromise cutaneous immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Toews, P. R. Bergstresser, and J. W. Streilein, Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB, J. Immunol. 124, 445–453 (1980).

    PubMed  CAS  Google Scholar 

  2. K. D. Cooper, L. Oberhelman, T. A. Hamilton, et al., UV exposure reduces immunization rates and promotes tolerance to epicutaneous antigens in humans: relationship to dose, CD1a-DR+ epidermal macrophage induction, and Langerhans cell depletion, Proc. Natl. Acad. Sci. USA 89, 8497–8501 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. W. Aberer, G. Schuler, G. Stingl, et al., Ultraviolet light depletes surface markers of Langerhans cells, J. Invest. Dermatol. 76, 202–210 (1981).

    Article  PubMed  CAS  Google Scholar 

  4. A. Tang and M. C. Udey, Inhibition of epidermal Langerhans cell function by low dose ultraviolet B radiation. Ultraviolet B radiation selectively modulates ICAM-1 (CD54) expression by murine Langerhans cells, J. Immunol. 146, 3347–3355 (1991).

    PubMed  CAS  Google Scholar 

  5. M. C. Udey, Cadherins and Langerhans cell immunobiology, Clin. Exp. Immunol. 107(Suppl. 1), 6–8 (1997).

    PubMed  CAS  Google Scholar 

  6. M. S. Duthie, I. Kimber, and M. Norval, The effects of ultraviolet radiation on the human immune system, Br. J. Dermatol 140, 995–1009 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. M. Cumberbatch and I. Kimber, Tumour necrosis factor-alpha is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization, Immunology 84, 31–35 (1995).

    PubMed  CAS  Google Scholar 

  8. M. Cumberbatch, R. J. Dearman, and I. Kimber, Interleukin 1 beta and the stimulation of Langehans cell migration: comparisons with tumour necrosis factor alpha, Arch. Dermatol. Res. 289, 277–284 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. M. Cumberbatch and I. Kimber, Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration, Immunology 75, 257–263 (1992).

    PubMed  CAS  Google Scholar 

  10. A. M. Moodycliffe, I. Kimber, and M. Norval, Role of tumour necrosis factor-alpha in ultraviolet B light-induced dendritic cell migration and suppression of contact hypersensitivity, Immunology 81, 79–84 (1994).

    PubMed  CAS  Google Scholar 

  11. M. Cumberbatch, I. Fielding, and I. Kimber, Modulation of epidermal Langerhans’ cell frequency by tumour necrosis factor-alpha, Immunology 81, 395–401 (1994).

    PubMed  CAS  Google Scholar 

  12. T. Horio and H. Okamoto, Oxygen intermediates are involved in ultraviolet radiation-induced damage of Langerhans cells, J. Invest. Dermatol. 88, 699–702 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. I. Iwai, M. Hatao, M. Naganuma, et al., UVA-induced immune suppression through an oxidative pathway, J. Invest. Dermatol. 112, 19–24 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. F. Trautinger, Mechanisms of photodamage of the skin and its functional consequences for skin ageing, Clin. Exp. Dermatol. 26, 573–577 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. J. Fleming, A. Ghose, and P. R. Harrison, Molecular mechanisms of cancer prevention by selenium compounds, Nutr Cancer 40, 42–49 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. J. E. Spallholz, L. M. Boylan, and H. S. Larsen, Advances in understanding selenium role in the immune-system, Ann. NY Acad. Sci. 587, 123–139 (1990).

    PubMed  CAS  Google Scholar 

  17. R. C. McKenzie, T. S. Rafferty, and G. J. Beckett, Selenium: an essential element for immune function, Immunol. Today 19, 342–345 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. R. C. McKenzie, T. S. Rafferty, J. R. Arthur, et al., Effects of selenium on immunity and ageing, in Selenium Its Molecular Biology and Role in Human Health, D. L. Hatfield, ed., Kluwer Academic, Boston, pp. 258–272 (2001).

    Google Scholar 

  19. C. B. Allan, G. M. Lacourciere, and T. C. Stadtman, Responsiveness of selenoproteins to dietary selenium, Annu. Rev. Nutr. 19, 1–16 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. R. C. McKenzie, J. R. Arthur, and G. J. Beckett, Selenium and the regulation of cell signalling, growth and survival: molecular and mechanistic aspects, Antiox. Redox Signal. 4, 339–355 (2002).

    Article  CAS  Google Scholar 

  21. K. Overvad, E. B. Thorling, P. Bjerring, et al., Selenium inhibits UV-light-induced skin carcinogenesis in hairless mice, Cancer Lett. 27, 163–170 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. K. E. Burke, G. F. Combs, Jr., E. G. Gross, et al., The effects of topical and oral l-selenomethionine on pigmentation and skin cancer induced by ultraviolet irradiation, Nutr. Cancer 17, 23–37 (1992).

    Article  Google Scholar 

  23. B. C. Pence, E. Delver, and D. M. Dunn, Effects of dietary selenium on UVB-induced skin carcinogenesis and epidermal antioxidant status, J. Invest. Dermatol. 102, 759–761 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. L. C. Clark, G. F. Graham, R. G. Crounse, R. Grimson, B Hulka, and C. M. Shy, Plasma selenium and skin neoplasms: a case-control study, Nutr. Cancer, 6, 13–21 (1984).

    PubMed  CAS  Google Scholar 

  25. M. S. Stewart, G. S. Cameron, and B. C. Pence, Antioxidant nutrients protect against UVB-induced oxidative damage to DNA of mouse keratinocytes in culture, J. Invest. Dermatol. 106, 1086–1089 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. T. S. Rafferty, C. Walker, J.A.A. Hunter, et al., Inhibition of ultraviolet radiation B (UVB)-induced IL-10 expression in murine keratinocytes by selenium compounds, Br. J. Dermatol. 146, 485–489 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. R. C. McKenzie, Selenium, ultraviolet radiation and the skin, Clin. Exp. Dermatol. 25, 631–636 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. J. R. Arthur, P. C. Morrice, F. Nicol, et al., The effects of selenium and copper deficiencies on glutathione S-transferase and glutathione peroxidase in rat liver, Biochem. J. 248, 248–544 (1987).

    Google Scholar 

  29. A. G. Abdel-Rahim, J. R. Arthur, and C. F. Mills, Effects of dietary copper, cadmium, iron, molybdenum and manganese on selenium utilization by the rat, J. Nutr. 116, 403–411 (1986).

    PubMed  CAS  Google Scholar 

  30. J. T. Rotruck, A. L. Pope, H. E. Ganther, et al., Selenium: biochemical role as a component of glutathione peroxidase, Science 179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  31. J. R. Arthur and R. Boyne, Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle, Life Sci. 36, 1569–1575 (1985).

    Article  PubMed  CAS  Google Scholar 

  32. M. M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  33. L. Kiremidjian-Schumacher, M. Roy, H. I. Wishe, et al., Supplementation with selenium augments the functions of natural killer and lymphokine-activated killer cells, Biol. Trace Element Res. 52, 227–239 (1996).

    CAS  Google Scholar 

  34. H. T. Petrie, L. W. Klassen, P. S. Klassen, et al., Selenium and the immune response: 2. Enhancement of murine cytotoxic T-lymphocyte and natural killer cell cytotoxicity in vivo, J. Leuk. Biol. 45, 215–220 (1989).

    CAS  Google Scholar 

  35. G. J. Beckett, J. R. Arthur, S. Miller, et al., Selenium, in Dietary Enhancement of Human Immune Function, D. A. Hughes, A. Bendich, and G. Darlington, eds., Humana, Totowa, NJ, in press (2003).

    Google Scholar 

  36. J. R. Arthur, F. Nicol, and G. J. Beckett, Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases, Am. J. Clin. Nutr. 57, 236S-239S (1993).

    PubMed  CAS  Google Scholar 

  37. K. M. Thompson, H. Haibach, and R. A. Sunde, Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differently regulated in rats by dietary selenium, J. Nutr. 125, 1438–1446 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafferty, T.S., Norval, M., El-Ghorr, A. et al. Dietary selenium levels determine epidermal langerhans cell numbers in mice. Biol Trace Elem Res 92, 161–171 (2003). https://doi.org/10.1385/BTER:92:2:161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:92:2:161

Index Entries

Navigation