Skip to main content
Log in

Dietary zinc modifies the characteristics of endothelial dilation in normozincemic rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Because zinc attenuates endothelial cell dysfunction that proceeds atherosclerosis, depressed zinc status may be involved in the initiation of endothelial dysfunction. However, before recommending a zinc-enriched diet to reduce the risks for atherosclerosis, the effect of excess zinc on endothelial cell functions in normozincemic status should be known. Therefore, in this study, the effect of dietary zinc on normal endothelial cell functions in animals subjected to a diet containing 334±58 ppm zinc for 30 d was studied to see whether supplemented zinc has an effect on endothelial cells. Despite a slight increase in blood zinc, unaltered aortic and kidney zinc contents were associated with unchanged blood pressure in rats subjected to a zinc-enriched diet. Increased basal nitric oxide and prostacyclin were accompanied by a normal response to phenylephrine. Dietary zinc influenced neither endothelial-dependent nor endothelial-independent relaxations significantly. However, it elevated the share of M1-type cholinoceptor response as well as dilator prostaglandin release, which seems to be nitric oxide dependent. There was a strong correlation (r=0.826, p<0.05) between M1-type cholinoceptor response and prostacyclin release in zinc-treated rings. These results suggested that zinc ions increases M1-mediated prostacyclin release in normal endothelial cells without altering intracellular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Tuormae, The adverse effect of zinc deficiency, J. Orthomol. Med. 10, 149–164 (1995).

    Google Scholar 

  2. B. Hennig, M. Toborek, and C. J. McClain, Antiatherogenic properties of zinc implications in endothelial cell metabolism, Nutrition 12, 711–717 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. C. J. McClain, P. Morris, and B. Hennig, Zinc and endothelial function, Nutrition 11, 117–120 (1995).

    PubMed  CAS  Google Scholar 

  4. B. Hennig, Y. Wang, S. Ramasamy, et al., Zinc protects against tumor necrosis factorinduced disruption of porcine endothelial cell monolayer integrity, J. Nutr. 123, 1003–1009 (1993).

    PubMed  CAS  Google Scholar 

  5. B. Hennig, P. Meerarani, M. Toborek, et al., Antioxidant like properties of zinc in activated endothelial cells, J. Am. Coll. Nutr. 18, 152–158 (1999).

    PubMed  CAS  Google Scholar 

  6. G. Oner, I. Bilgen, M. Edremitlioglu, et al., The effect of cadmium and zinc ions on vascular tonus, in Metal Ions in Biology and Medicine, Vol. 6, J. A. Centeno, P. Collery, G. Vernet, et al., eds., John Libbey Eurotext, Paris, pp. 638–640 (2000).

    Google Scholar 

  7. J. B. Smith, S. D. Dwyer, and L. Smith, Cadmium evokes inositol phosphate formation and calcium mobilization. Evidence for cell surface receptor that cadmium stimulate and zinc antagonizes, J. Biol. Chem. 264, 7115–7118 (1989).

    PubMed  CAS  Google Scholar 

  8. J. Benters, U. Flogel, T. Schafer, et al., Study of the interactions of cadmium and zinc ions with cellular calcium homeostasis using 19F-NMR spectroscopy, J. Biochem. 322, 793–799 (1997).

    CAS  Google Scholar 

  9. R. Diaz-Arrastia and E. Hashemi, Zinc and ascorbic acid coordinately promote lipid peroxidation in brain membranes, J. Mol. Neurosci. 14, 167–173 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. L. S. Prothero, A. Mathie, and C. D. Richards, Purinergic and muscarinic receptor activation activates a common calcium entry pathway in rat neurons and glial cells, Neuropharmacology 39, 1768–1778 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. R. A. Shapiro, N. M. Scherer, B. A. Habacker, et al., Isolation sequence and functional expression of the mouse M1 muscarinic Ach receptor gene, J. Biol. Chem. 263, 18,397–18,403 (1988).

    CAS  Google Scholar 

  12. Z. L. Lu and E. C. Hulme, A network of conserved intramolecular contacts defines the off-stage of the transmembrane switch mechanism in a seven transmembrane receptor, J. Biol. Chem. 275, 5682–5686 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. M. P. Demontis, M. V. Varoni, A. R. Volpe, et al., Role of nitric oxide synthase inhibition in the acute hypertensive response to intracerebroventricular cadmium, Br. J. Pharmacol. 123, 129–135 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. D. C. Ramirez, L. D. Martinez, E. Marchevsky, et al., Biphasic effect of cadmium in noncytotoxic conditions on the secretion of nitric oxide from peritoneal macrophages, Toxicology 139, 167–177 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. S. Taddei, A. Virdis, L. Ghiadoni, et al., Endothelial dysfunction in hypertension, J. Nephrol. 13, 205–210 (2000).

    PubMed  CAS  Google Scholar 

  16. O. L. Woodman, O. Wongsawatkul, and C. G. Sobey, Contribution of nitric oxide, cyclic GMP and K+ channels to acetylcholine-induced dilatation of rat conduit and resistance arteries, Clin. Exp. Pharmacol. Physiol. 27, 34–40 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Nishikawa, D. W. Stepp, and W. M. Chilian, In vivo location and mechanism of EDHF-mediated vasodilatation in canine coronary microcirculation, Am. J. Physiol. 277, H1252-H1259 (1999).

    PubMed  CAS  Google Scholar 

  18. G. Öner and I. Bilgen, l-Arginine induced-changes the characteristics of endothelial relaxants, J. Basic Clin. Physiol. Pharmacol. 12, 77–90 (2001).

    PubMed  Google Scholar 

  19. D. Salvemini, S. L. Settle, J. L. Masferrer, et al., Regulation of prostaglandin production by nitric oxide; an in vivo analysis, Br. J. Pharmacol. 114, 1171–1778 (1995).

    PubMed  CAS  Google Scholar 

  20. D. Salvemini, M. G. Currie, and V. Mallace, Nitric oxide mediated cyclooxygenase activation. A key event in the antiplatelet effects of nitrosodilators, J. Clin. Invest. 97, 2562–2568 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. H. F. Cheng, J. L. Wang, M. Z. Zhang, et al., Nitric oxide regulates renal cortical cyclooxygenase-2 expression, Am. J. Physiol. (Renal Physiol.) 278, F122-F129 (2000).

    Google Scholar 

  22. E. N. Bakker and P. Sipkema, Permissive effect of nitric oxide in arachidonic acid induced dilation in isolated rat arterioles, Cardiovasc. Res. 38, 782–787 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. O. M. Marita, Y. Mano, and S. Murota, Differential effects of nitric oxide on the activity of prostaglandin endoperoxide H synthase-1 and -2 in vascular endothelial cells, Prostaglandins Leukotrienes Essential Fatty Acids 62, 161–167 (2000).

    Article  Google Scholar 

  24. D. Salvemini, T. P. Misko, J. L. Masferrer, et al., Nitric oxide activates cyclooxygenase enzymes, Proc. Natl. Acad. Sci. USA 90, 7240–7244 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. J. X. Chen, L. C. Berry, Jr., B. W. Christhman, et al., No regulates LPS-stimulated cyclooxygenase gene expression and activity in pulmonary artery endothelium, Am. J. Physiol. (Lung Cell Mol. Physiol.) 280, L450-L457 (2001).

    CAS  Google Scholar 

  26. T. Osanai, N. Fujita, N. Fujiwara, et al., Cross talk of shear-induced production of prostacyclin and nitric oxide in endothelial cells, Am. J. Physiol. (Heart Circ. Physiol.) 278, H233-H238 (2000).

    CAS  Google Scholar 

  27. O. Kasonen, H. Kankaanranta, U. Mala-Ranta, et al., Inhibition by nitric oxide releasing compounds of prostacyclin production in human endothelial cells, Br. J. Pharmacol. 125, 247–254 (1998).

    Article  Google Scholar 

  28. L. Smith, V. Pijuan, Y. Zhuang, et al., Reversible desensitization of fibroblast to cadmium receptor stimuli: evidence that growth in high zinc represses a xenobiotic receptor, Exp. Cell Res. 202, 174–182 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. J. Garcia-Colunga, M. Gonzales-Herrera, and R. Miledi, Modulation of alpha 2 beta 4 neuronal nicotinic acetylcholinic receptors by zinc, Neuroreport 12, 147–150 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Nasa, H. Kume, and S. Takeo, Acethylcholine induced vasoconstrictor response of coronary vessels in rats: a possible contribution of M2 muscarinic receptor activation, Heart Vessels 12, 179–191 (1997).

    PubMed  CAS  Google Scholar 

  31. M. G. Tyagi, H. Kan, Y. Ruan, et al., Studies on the characterization of the subtype(s) of muscarinic receptor involved in prostacyclin synthesis in rabbit cardiomyocytes, J. Recept. Signal Transduct. Res. 16, 273–296 (1996).

    PubMed  CAS  Google Scholar 

  32. M. E. Murphy and J. E. Brayden, Apamin sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries, J. Physiol. (Lond.) 489, 723–734 (1995).

    CAS  Google Scholar 

  33. K. Komori and P. M. Vanhoutte, Endothelium derived hyperpolarizing factor, Blood Vessels 27, 238–245 (1990).

    PubMed  CAS  Google Scholar 

  34. H. I. Chen and Y. L. Liao, Effect of chronic exercise on muscarinic receptor-mediated vasodilatation in rats, Chin. J. Physiol. 41, 161–166 (1998).

    PubMed  CAS  Google Scholar 

  35. U. Schönbeck, G. K. Sukhova, P. Graber, et al., Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions, Am. J. Pathol. 155, 1281–1291 (1999).

    PubMed  Google Scholar 

  36. M. P. Gupta, M. D. Ober, C. Patterson, et al., Nitric oxide attenuates H(2)O(2)-induced endothelial barrier dysfunction: mechanisms of protection, Am. J. Physiol. (Lung Cell Mol. Physiol.) 280, L116-L126 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oner, G., Bilgen, I., Edremitlioglu, M. et al. Dietary zinc modifies the characteristics of endothelial dilation in normozincemic rats. Biol Trace Elem Res 92, 123–137 (2003). https://doi.org/10.1385/BTER:92:2:123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:92:2:123

Index Entries

Navigation